next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00005179 seconds elapsed
 -- 0.000641047 seconds elapsed
 -- 0.000144122 seconds elapsed
 -- 0.00005266 seconds elapsed
 -- 0.000545627 seconds elapsed
 -- 0.000135251 seconds elapsed
 -- 0.000048321 seconds elapsed
 -- 0.00004073 seconds elapsed
 -- 0.000115222 seconds elapsed
 -- 0.00004892 seconds elapsed
 -- 0.000494606 seconds elapsed
 -- 0.000130882 seconds elapsed
 -- 0.00005275 seconds elapsed
 -- 0.000479966 seconds elapsed
 -- 0.000130072 seconds elapsed
 -- 0.00005223 seconds elapsed
 -- 0.000466516 seconds elapsed
 -- 0.000130521 seconds elapsed
 -- 0.00004953 seconds elapsed
 -- 0.000504436 seconds elapsed
 -- 0.000128842 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.00005242 seconds elapsed
 -- 0.000586667 seconds elapsed
 -- 0.000129422 seconds elapsed
 -- 0.000050961 seconds elapsed
 -- 0.000508286 seconds elapsed
 -- 0.000125741 seconds elapsed
 -- 0.00004953 seconds elapsed
 -- 0.000471754 seconds elapsed
 -- 0.000138622 seconds elapsed
 -- 0.00004978 seconds elapsed
 -- 0.000468426 seconds elapsed
 -- 0.00012571 seconds elapsed
 -- 0.000050681 seconds elapsed
 -- 0.000710757 seconds elapsed
 -- 0.000146102 seconds elapsed
 -- 0.000050201 seconds elapsed
 -- 0.000495285 seconds elapsed
 -- 0.000128832 seconds elapsed
 -- 0.000050021 seconds elapsed
 -- 0.000596547 seconds elapsed
 -- 0.000148982 seconds elapsed
 -- 0.000050409 seconds elapsed
 -- 0.000509257 seconds elapsed
 -- 0.000141833 seconds elapsed
 -- 0.000050672 seconds elapsed
 -- 0.000480425 seconds elapsed
 -- 0.000129193 seconds elapsed
 -- 0.00005126 seconds elapsed
 -- 0.000468606 seconds elapsed
 -- 0.000126381 seconds elapsed
 -- 0.00005024 seconds elapsed
 -- 0.000473097 seconds elapsed
 -- 0.000128521 seconds elapsed
 -- 0.000053311 seconds elapsed
 -- 0.000510137 seconds elapsed
 -- 0.000130773 seconds elapsed
 -- 0.000051841 seconds elapsed
 -- 0.000731997 seconds elapsed
 -- 0.000216022 seconds elapsed
 -- 0.000049172 seconds elapsed
 -- 0.000724048 seconds elapsed
 -- 0.000224094 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.