My Project
AquiferNumerical.hpp
1 /*
2  Copyright (C) 2020 Equinor ASA
3  Copyright (C) 2020 SINTEF Digital
4 
5  This file is part of the Open Porous Media project (OPM).
6 
7  OPM is free software: you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation, either version 3 of the License, or
10  (at your option) any later version.
11 
12  OPM is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with OPM. If not, see <http://www.gnu.org/licenses/>.
19 */
20 
21 #ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
22 #define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
23 
24 #include <opm/output/data/Aquifer.hpp>
25 
26 #include <opm/input/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
27 
28 #include <opm/simulators/aquifers/AquiferInterface.hpp>
29 #include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
30 
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <unordered_map>
35 #include <utility>
36 #include <vector>
37 
38 namespace Opm
39 {
40 template <typename TypeTag>
41 class AquiferNumerical : public AquiferInterface<TypeTag>
42 {
43 public:
44  using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
45  using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
46  using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
47  using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
48  using GridView = GetPropType<TypeTag, Properties::GridView>;
49  using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
50  using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
51  using Simulator = GetPropType<TypeTag, Properties::Simulator>;
52 
53  enum { dimWorld = GridView::dimensionworld };
54  enum { numPhases = FluidSystem::numPhases };
55  static constexpr int numEq = BlackoilIndices::numEq;
56 
57  using Eval = DenseAd::Evaluation<double, numEq>;
58  using Toolbox = MathToolbox<Eval>;
59 
60  using typename AquiferInterface<TypeTag>::RateVector;
61 
62  // Constructor
63  AquiferNumerical(const SingleNumericalAquifer& aquifer,
64  const Simulator& ebos_simulator)
65  : AquiferInterface<TypeTag>(aquifer.id(), ebos_simulator)
66  , flux_rate_ (0.0)
67  , cumulative_flux_(0.0)
68  , init_pressure_ (aquifer.numCells(), 0.0)
69  {
70  this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
71 
72  auto aquifer_on_process = false;
73  for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
74  const auto* cell = aquifer.getCellPrt(idx);
75 
76  // Due to parallelisation, the cell might not exist in the current process
77  const int compressed_idx = ebos_simulator.vanguard().compressedIndexForInterior(cell->global_index);
78  if (compressed_idx >= 0) {
79  this->cell_to_aquifer_cell_idx_[compressed_idx] = idx;
80  aquifer_on_process = true;
81  }
82  }
83 
84  if (aquifer_on_process) {
85  this->checkConnectsToReservoir();
86  }
87  }
88 
89  void initFromRestart(const data::Aquifers& aquiferSoln) override
90  {
91  auto xaqPos = aquiferSoln.find(this->aquiferID());
92  if (xaqPos == aquiferSoln.end())
93  return;
94 
95  if (this->connects_to_reservoir_) {
96  this->cumulative_flux_ = xaqPos->second.volume;
97  }
98 
99  if (const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
100  aqData != nullptr)
101  {
102  this->init_pressure_ = aqData->initPressure;
103  }
104 
105  this->solution_set_from_restart_ = true;
106  }
107 
108  void beginTimeStep() override {}
109  void addToSource(RateVector&, const unsigned, const unsigned) override {}
110 
111  void endTimeStep() override
112  {
113  this->pressure_ = this->calculateAquiferPressure();
114  this->flux_rate_ = this->calculateAquiferFluxRate();
115  this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize();
116  }
117 
118  data::AquiferData aquiferData() const override
119  {
120  data::AquiferData data;
121  data.aquiferID = this->aquiferID();
122  data.pressure = this->pressure_;
123  data.fluxRate = this->flux_rate_;
124  data.volume = this->cumulative_flux_;
125 
126  auto* aquNum = data.typeData.template create<data::AquiferType::Numerical>();
127  aquNum->initPressure = this->init_pressure_;
128 
129  return data;
130  }
131 
132  void initialSolutionApplied() override
133  {
134  if (this->solution_set_from_restart_) {
135  return;
136  }
137 
138  this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
139  this->flux_rate_ = 0.;
140  this->cumulative_flux_ = 0.;
141  }
142 
143 private:
144  void checkConnectsToReservoir()
145  {
146  ElementContext elem_ctx(this->ebos_simulator_);
147  auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
148  this->ebos_simulator_.gridView().template end</*codim=*/0>(),
149  [&elem_ctx, this](const auto& elem) -> bool
150  {
151  elem_ctx.updateStencil(elem);
152 
153  const auto cell_index = elem_ctx
154  .globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
155 
156  return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
157  });
158 
159  assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
160  && "Internal error locating numerical aquifer's connecting cell");
161 
162  this->connects_to_reservoir_ =
163  elemIt->partitionType() == Dune::InteriorEntity;
164  }
165 
166  double calculateAquiferPressure() const
167  {
168  auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
169  return this->calculateAquiferPressure(capture);
170  }
171 
172  double calculateAquiferPressure(std::vector<double>& cell_pressure) const
173  {
174  double sum_pressure_watervolume = 0.;
175  double sum_watervolume = 0.;
176 
177  ElementContext elem_ctx(this->ebos_simulator_);
178  const auto& gridView = this->ebos_simulator_.gridView();
179  OPM_BEGIN_PARALLEL_TRY_CATCH();
180 
181  for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
182  elem_ctx.updatePrimaryStencil(elem);
183 
184  const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
185  const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
186  if (idx < 0) {
187  continue;
188  }
189 
190  elem_ctx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
191  const auto& iq0 = elem_ctx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
192  const auto& fs = iq0.fluidState();
193 
194  // TODO: the porosity of the cells are still wrong for numerical aquifer cells
195  // Because the dofVolume still based on the grid information.
196  // The pore volume is correct. Extra efforts will be done to get sensible porosity value here later.
197  const double water_saturation = fs.saturation(this->phaseIdx_()).value();
198  const double porosity = iq0.porosity().value();
199  const double volume = elem_ctx.dofTotalVolume(0, 0);
200  // TODO: not sure we should use water pressure here
201  const double water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
202  const double water_volume = volume * porosity * water_saturation;
203  sum_pressure_watervolume += water_volume * water_pressure_reservoir;
204  sum_watervolume += water_volume;
205 
206  cell_pressure[idx] = water_pressure_reservoir;
207  }
208  OPM_END_PARALLEL_TRY_CATCH("AquiferNumerical::calculateAquiferPressure() failed: ", this->ebos_simulator_.vanguard().grid().comm());
209  const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
210  comm.sum(&sum_pressure_watervolume, 1);
211  comm.sum(&sum_watervolume, 1);
212 
213  // Ensure all processes have same notion of the aquifer cells' pressure values.
214  comm.sum(cell_pressure.data(), cell_pressure.size());
215 
216  return sum_pressure_watervolume / sum_watervolume;
217  }
218 
219  template <class ElemCtx>
220  double getWaterFlux(const ElemCtx& elem_ctx, unsigned face_idx) const
221  {
222  const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
223  const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
224  return water_flux;
225  }
226 
227  double calculateAquiferFluxRate() const
228  {
229  double aquifer_flux = 0.0;
230 
231  if (! this->connects_to_reservoir_) {
232  return aquifer_flux;
233  }
234 
235  ElementContext elem_ctx(this->ebos_simulator_);
236  const auto& gridView = this->ebos_simulator_.gridView();
237  for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
238  // elem_ctx.updatePrimaryStencil(elem);
239  elem_ctx.updateStencil(elem);
240 
241  const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
242  const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
243  // we only need the first aquifer cell
244  if (idx != 0) {
245  continue;
246  }
247 
248  const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
249  // const auto &problem = elem_ctx.problem();
250  const auto& stencil = elem_ctx.stencil(0);
251  // const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
252 
253  for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
254  const auto& face = stencil.interiorFace(face_idx);
255  // dof index
256  const std::size_t i = face.interiorIndex();
257  const std::size_t j = face.exteriorIndex();
258  // compressed index
259  // const size_t I = stencil.globalSpaceIndex(i);
260  const std::size_t J = stencil.globalSpaceIndex(j);
261 
262  assert(stencil.globalSpaceIndex(i) == cell_index);
263 
264  // we do not consider the flux within aquifer cells
265  // we only need the flux to the connections
266  if (this->cell_to_aquifer_cell_idx_[J] > 0) {
267  continue;
268  }
269  elem_ctx.updateAllIntensiveQuantities();
270  elem_ctx.updateAllExtensiveQuantities();
271 
272  const double water_flux = getWaterFlux(elem_ctx,face_idx);
273  const std::size_t up_id = water_flux >= 0.0 ? i : j;
274  const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
275  const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_()));
276  const double face_area = face.area();
277  aquifer_flux += water_flux * invB * face_area;
278  }
279 
280  // we only need to handle the first aquifer cell, we can exit loop here
281  break;
282  }
283 
284  return aquifer_flux;
285  }
286 
287  double flux_rate_; // aquifer influx rate
288  double cumulative_flux_; // cumulative aquifer influx
289  std::vector<double> init_pressure_{};
290  double pressure_; // aquifer pressure
291  bool solution_set_from_restart_ {false};
292  bool connects_to_reservoir_ {false};
293 
294  // TODO: maybe unordered_map can also do the work to save memory?
295  std::vector<int> cell_to_aquifer_cell_idx_;
296 };
297 
298 } // namespace Opm
299 
300 #endif
Definition: AquiferInterface.hpp:32
Definition: AquiferNumerical.hpp:42
This file contains a set of helper functions used by VFPProd / VFPInj.
Definition: BlackoilPhases.hpp:27