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across Apply a function (or functions) across multiple columns
Description

across() makes it easy to apply the same transformation to multiple columns, allowing
you to use select() semantics inside in ”data-masking” functions like summarise() and
mutate(). See vignette(”colwise”) for more details.

if_any() and if_all() apply the same predicate function to a selection of columns and
combine the results into a single logical vector: if_any() is TRUE when the predicate is TRUE
for any of the selected columns, if_all() is TRUE when the predicate is TRUE for all selected
columns.

across() supersedes the family of ”scoped variants” like summarise_at(), summarise_if (),
and summarise_all().

Usage

NULL, ..., .names = NULL)

everything(), .fns

across(.cols

if_any(.cols = everything(), .fns = NULL, ..., .names = NULL)

if_all(.cols = everything(), .fns = NULL, ..., .names = NULL)
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Arguments

.cols, cols jtidy-select; Columns to transform. Because across() is used within
functions like summarise() and mutate(), you can’t select or compute
upon grouping variables.

.fns Functions to apply to each of the selected columns. Possible values are:

e A function, e.g. mean.
e A purrr-style lambda, e.g. ~ mean(.x,na.rm = TRUE)
e Alist of functions/lambdas, e.g. list(mean = mean, n_miss = ~ sum(is.na(.x))
e NULL: the default value, returns the selected columns in a data frame
without applying a transformation. This is useful for when you want
to use a function that takes a data frame.
Within these functions you can use cur_column() and cur_group() to
access the current column and grouping keys respectively.
Additional arguments for the function calls in .fns. Using these ... is
strongly discouraged because of issues of timing of evaluation.

.names A glue specification that describes how to name the output columns.
This can use {.col} to stand for the selected column name, and {.fn}
to stand for the name of the function being applied. The default (NULL)
is equivalent to "{.col}" for the single function case and "{.col}_{.fn}"
for the case where a list is used for .fns.

Value

across() returns a tibble with one column for each column in .cols and each function in
.fns.

if_any() and if_all() return a logical vector.

Timing of evaluation

R code in dplyr verbs is generally evaluated once per group. Inside across() however, code
is evaluated once for each combination of columns and groups. If the evaluation timing is
important, for example if you're generating random variables, think about when it should
happen and place your code in consequence.

gdf <-
tibble(g = c(1, 1, 2, 3), vl = 10:13, v2 = 20:23) %>%
group_by(g)

set.seed(1)

# Outside: 1 normal variate
n <- rnorm(1)
gdf %>% mutate(across(vil:v2,

.X + n))

## # A tibble: 4 x 3
## # Groups: g [3]

#it g v v2
##  <dbl> <dbl> <dbl>
## 1 1 9.37 19.4
## 2 110.4 20.4
## 3 2 11.4 21.4
## 4 312.4 22.4
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# Inside a verb: 3 normal variates (ngroup)
gdf %>% mutate(n = rnorm(1), across(vl:v2, ~ .x + n))

## # A tibble: 4 x 4
## # Groups: g [3]
#it g vl v2 n
##  <dbl> <dbl> <dbl> <dbl>

## 1 1 10.2 20.2 0.184
## 2 1T 11.2 21.2 0.184
## 3 2 11.2 21.2 -0.836
## 4 3 14.6 24.6 1.60

# Inside ‘across()‘: 6 normal variates (ncol * ngroup)
gdf %>% mutate(across(vl:v2, ~ .x + rnorm(1)))

## # A tibble: 4 x 3
#H # Groups: g [3]

#it g vl v2

##  <dbl> <dbl> <dbl>

## 1 1 10.3 20.7

## 2 1 11.3 21.7

## 3 2 11.2 22.6

## 4 3 13.5 22.7
See Also

c_across() for a function that returns a vector

Examples

# across() ———————mmmmm— e mm
# Different ways to select the same set of columns
# See <https://tidyselect.r-lib.org/articles/syntax.html> for details
iris %>%
as_tibble() %>%
mutate(across(c(Sepal.Length, Sepal.Width), round))
iris %>%
as_tibble() %>%
mutate(across(c(1, 2), round))
iris %>%
as_tibble() %>%
mutate(across(1:Sepal.Width, round))
iris %>%
as_tibble() %>%
mutate(across(where(is.double) & !c(Petal.Length, Petal.Width), round))

# A purrr-style formula
iris %>%
group_by(Species) %>%
summarise(across(starts_with("Sepal”), ~ mean(.x, na.rm = TRUE)))

# A named list of functions
iris %>%
group_by(Species) %>%
summarise(across(starts_with("Sepal”), list(mean = mean, sd = sd)))
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# Use the .names argument to control the output names
iris %>%
group_by(Species) %>%
summarise(across(starts_with("”Sepal”), mean, .names = "mean_{.col}"))
iris %>%
group_by(Species) %>%
summarise(across(starts_with("Sepal”), list(mean = mean, sd = sd), .names = "{.col}.{.fn}"))

# When the list is not named, .fn is replaced by the function's position
iris %>%
group_by(Species) %>%
summarise(across(starts_with("Sepal”), list(mean, sd), .names = "{.col}.fn{.fn}"))

# across() returns a data frame, which can be used as input of another function
df <- data.frame(
x1 = c(1, 2, NA),

x2 = c(4, NA, 6),

y =c("a", "b", "c")
)
df %>%

mutate(x_complete = complete.cases(across(starts_with(”"x"))))
df %>%

filter(complete.cases(across(starts_with("x"))))

# if_any() and if_all() -—-—-——=—=—=—=——————m— oo
iris %>%

filter(if_any(ends_with("Width"), = . > 4))
iris %>%
filter(if_all(ends_with("Width"), ~ . > 2))
all_vars Apply predicate to all variables
Description
[Superseded|

all vars() and any_vars() were only needed for the scoped verbs, which have been super-
seded by the use of across() in an existing verb. See vignette("colwise") for details.

These quoting functions signal to scoped filtering verbs (e.g. filter_if() or filter_all())
that a predicate expression should be applied to all relevant variables. The all_vars()
variant takes the intersection of the predicate expressions with & while the any_vars()
variant takes the union with |.

Usage

all_vars(expr)
any_vars(expr)

Arguments

expr jdata-masking; An expression that returns a logical vector, using . to
refer to the ”current” variable.
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See Also

vars() for other quoting functions that you can use with scoped verbs.

arrange Arrange rows by column values

Description

arrange() orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange () largely ignores grouping; you need to explicitly mention
grouping variables (or use .by_group = TRUE) in order to group by them, and functions of
variables are evaluated once per data frame, not once per group.

Usage
arrange(.data, ..., .by_group = FALSE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
jdata-masking; Variables, or functions of variables. Use desc() to sort a
variable in descending order.
.by_group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.
Details
Locales:

The sort order for character vectors will depend on the collating sequence of the locale in
use: see locales().

Missing values:

Unlike base sorting with sort(), NA are:

e always sorted to the end for local data, even when wrapped with desc().

e treated differently for remote data, depending on the backend.

Value

An object of the same type as .data. The output has the following properties:

e All rows appear in the output, but (usually) in a different place.
e Columns are not modified.
e Groups are not modified.

e Data frame attributes are preserved.
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Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: filter(), mutate(), rename(), select(), slice(), summarise()

Examples

arrange(mtcars, cyl, disp)
arrange(mtcars, desc(disp))

# grouped arrange ignhores groups

by_cyl <- mtcars %>% group_by(cyl)

by_cyl %>% arrange(desc(wt))

# Unless you specifically ask:

by_cyl %>% arrange(desc(wt), .by_group = TRUE)

# use embracing when wrapping in a function;
# see ?dplyr_data_masking for more details
tidy_eval_arrange <- function(.data, var) {
.data %>%
arrange({{ var }})
3

tidy_eval_arrange(mtcars, mpg)

# use across() access select()-style semantics
iris %>% arrange(across(starts_with("Sepal”)))
iris %>% arrange(across(starts_with("Sepal”), desc))

auto_copy Copy tables to same source, if necessary

Description

Copy tables to same source, if necessary

Usage
auto_copy(x, y, copy = FALSE, ...)
Arguments
X,y y will be copied to x, if necessary.
copy If x and y are not from the same data source, and copy is TRUE, then y

will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

Other arguments passed on to methods.
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band_members Band membership

Description

These data sets describe band members of the Beatles and Rolling Stones. They are toy
data sets that can be displayed in their entirety on a slide (e.g. to demonstrate a join).

Usage

band_members
band_instruments

band_instruments?2

Format

Each is a tibble with two variables and three observations

Detalils

band_instruments and band_instruments2 contain the same data but use different column
names for the first column of the data set. band_instruments uses name, which matches the
name of the key column of band_members; band_instruments2 uses artist, which does not.

Examples

band_members
band_instruments
band_instruments?2

between Do values in a numeric vector fall in specified range?

Description

This is a shortcut for x >= left & x <= right, implemented efficiently in C++ for local
values, and translated to the appropriate SQL for remote tables.

Usage

between(x, left, right)

Arguments

X A numeric vector of values

left, right Boundary values (must be scalars).
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Examples

between(1:12, 7, 9)

X <= rnorm(le2)
x[between(x, -1, 1)]

## Or on a tibble using filter
filter(starwars, between(height, 100, 150))

bind Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of do.call(rbind,dfs) or
do.call(cbind,dfs) for binding many data frames into one.

Usage
bind_rows(..., .id = NULL)
bind_cols(
.name_repair = c("unique”, "universal”, "check_unique”, "minimal")
)
Arguments
Data frames to combine.
Each argument can either be a data frame, a list that could be a data
frame, or a list of data frames.
When row-binding, columns are matched by name, and any missing columns
will be filled with NA.
When column-binding, rows are matched by position, so all data frames
must have the same number of rows. To match by value, not position,
see mutate-joins.
.id Data frame identifier.

When .id is supplied, a new column of identifiers is created to link each
row to its original data frame. The labels are taken from the named
arguments to bind_rows(). When a list of data frames is supplied, the
labels are taken from the names of the list. If no names are found a
numeric sequence is used instead.

n on

.name_repair One of "unique”, "universal”, or "check_unique"”. See vctrs::vec_as_names()
for the meaning of these options.
Details

The output of bind_rows() will contain a column if that column appears in any of the
inputs.
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Value

bind_rows() and bind_cols() return the same type as the first input, either a data frame,
tbl_df, or grouped_df.

Examples

one <- starwars[1:4, ]
two <- starwars[9:12, ]

# You can supply data frames as arguments:
bind_rows(one, two)

# The contents of lists are spliced automatically:
bind_rows(list(one, two))
bind_rows(split(starwars, starwars$homeworld))
bind_rows(list(one, two), list(two, one))

# In addition to data frames, you can supply vectors. In the rows
# direction, the vectors represent rows and should have inner

# names:
bind_rows(
c(a=1,b=2)),
c(a=3,b=4)
)
# You can mix vectors and data frames:
bind_rows(
c(a=1,b=2)),
tibble(a = 3:4, b = 5:6),
ca=17, b=28)
)

\

# When you supply a column name with the ‘.id‘ argument, a new
# column is created to link each row to its original data frame

bind_rows(list(one, two), .id = "id")
bind_rows(list(a = one, b = two), .id = "id")
bind_rows("group 1" = one, "group 2" = two, .id = "groups")

# Columns don't need to match when row-binding
bind_rows(tibble(x = 1:3), tibble(y = 1:4))

# Row sizes must be compatible when column-binding
try(bind_cols(tibble(x = 1:3), tibble(y = 1:2)))

# Even with @ columns
try(bind_cols(tibble(x = 1:3), tibble()))

bind_cols(one, two)
bind_cols(list(one, two))

case_when A general vectorised if
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Description

case_when

This function allows you to vectorise multiple if_else() statements. It is an R equivalent

of the SQL CASE WHEN statement. If no cases match, NA is returned.

Usage

case_when(.

Arguments

Value

)

jdynamic-dots; A sequence of two-sided formulas.

The left hand side

(LHS) determines which values match this case. The right hand side

(RHS) provides the replacement value.

The LHS must evaluate to a logical vector. The RHS does not need to be
logical, but all RHSs must evaluate to the same type of vector.

Both LHS and RHS may have the same length of either 1 or n. The value
of n must be consistent across all cases. The case of n == 0 is treated as

a variant of n !=1.
NULL inputs are ignored.

A vector of length 1 or n, matching the length of the logical input or output vectors, with
the type (and attributes) of the first RHS. Inconsistent lengths or types will generate an

error.

Examples

x <- 1:50
case_when(

X %% 35 == @ ~ "fizz buzz",
X %% 5 ==0 " "fizz",
X %% 7 ==0 ~ "buzz",
TRUE ~ as.character(x)

)

# Like an if statement, the arguments are evaluated in order, so you must
# proceed from the most specific to the most general. This won't work:

case_when(

TRUE ~ as.character(x),

X %% ==

X %% ==

X %% 35 ==
)

# If none of
case_when(
X %% 5 ==
X %% 1 ==
X %% 35 ==
)

# Note that NA values in the vector x do not get special treatment.

0~
0~
0~

the

"fizz",
"buzz",
"fizz buzz"

cases match, NA is used:
"fizz",

"buzz",
"fizz buzz"

# to explicitly handle NA values you can use the ‘is.na‘ function:
x[2:4] <- NA_real_

If you want
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case_when(
X %% 35 == @ ~ "fizz buzz",
X %% 5 ==0 " "fizz",
X %% 7 ==0 ~ "buzz",
is.na(x) ~ "nope",
TRUE ~ as.character(x)

)

# All RHS values need to be of the same type. Inconsistent types will throw an error.

# This applies also to NA values used in RHS: NA is logical, use
# typed values like NA_real_, NA_complex, NA_character_, NA_integer_ as appropriate.

case_when(
X %% 35 == @ ~ NA_character_,
X %% 5 ==0 " "fizz",
X %% 7 ==0 ~ "buzz",
TRUE ™ as.character(x)
)
case_when(
X %% 35 == ~ 35,
X %% 5 == ~ 5,
X% 7==0"17,
TRUE ™ NA_real_
)

# case_when() evaluates all RHS expressions, and then constructs its
# result by extracting the selected (via the LHS expressions) parts.
# In particular NaNs are produced in this case:
y <- seq(-2, 2, by = .5)
case_when(

y >= 0 7 sqrt(y),

TRUE ~y

# This throws an error as NA is logical not numeric
try(case_when(

X %% 35 == 0 ~ 35,

X %%5==0 "5,

X %% 7==0"1,

TRUE = NA
))

# case_when is particularly useful inside mutate when you want to
# create a new variable that relies on a complex combination of existing
# variables
starwars %>%
select(name:mass, gender, species) %>%
mutate(
type = case_when(
height > 200 | mass > 200 ~ "large",
species == "Droid” ~ "robot",
TRUE ~ "other”

# ‘case_when()‘ is not a tidy eval function. If you'd like to reuse
# the same patterns, extract the ‘case_when()‘ call in a normal

13
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# function:
case_character_type <- function(height, mass, species) {
case_when(
height > 200 | mass > 200 ~ "large",
species == "Droid” ~ "robot"”,
TRUE ~ "other”
)
3

case_character_type(150, 250, "Droid")
case_character_type(150, 150, "Droid")

# Such functions can be used inside ‘mutate()‘ as well:
starwars %>%
mutate(type = case_character_type(height, mass, species)) %>%
pull(type)

‘case_when()" ignores “NULL‘ inputs. This is useful when you'd

like to use a pattern only under certain conditions. Here we'll

take advantage of the fact that ‘if* returns ‘NULL‘ when there is

no ‘else‘ clause:

case_character_type <- function(height, mass, species, robots = TRUE) {
case_when(

#
#
#
#

height > 200 | mass > 200 ~ "large",
if (robots) species == "Droid” ~ "robot”,
TRUE ~ "other"
)
3

starwars %>%
mutate(type = case_character_type(height, mass, species, robots = FALSE)) %>%
pull(type)

coalesce Find first non-missing element

Description
Given a set of vectors, coalesce() finds the first non-missing value at each position. This
is inspired by the SQL COALESCE function which does the same thing for NULLs.

Usage

coalesce(...)

Arguments
jdynamic-dots; Vectors. Inputs should be recyclable (either be length 1
or same length as the longest vector) and coercible to a common type. If
data frames, they are coalesced column by column.
Value
A vector the same length as the first ... argument with missing values replaced by the first

non-missing value.
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See Also

na_if () to replace specified values with a NA. tidyr::replace_na() to replace NA with a
value

Examples

# Use a single value to replace all missing values
x <- sample(c(1:5, NA, NA, NA))
coalesce(x, 0L)

# Or match together a complete vector from missing pieces
y <= c(1, 2, NA, NA, 5)

z <- c(NA, NA, 3, 4, 5)

coalesce(y, z)

# Supply lists by with dynamic dots
vecs <- list(

c(1, 2, NA, NA, 5),

c(NA, NA, 3, 4, 5)
)

coalesce(!!!vecs)

compute Force computation of a database query

Description

compute() stores results in a remote temporary table. collect() retrieves data into a local
tibble. collapse() is slightly different: it doesn’t force computation, but instead forces
generation of the SQL query. This is sometimes needed to work around bugs in dplyr’s
SQL generation.

All functions preserve grouping and ordering.

Usage

compute(x, ...)
collect(x, ...)

collapse(x, ...)

Arguments

X A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

Arguments passed on to methods
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Methods

These functions are generics, which means that packages can provide implementations
(methods) for other classes. See the documentation of individual methods for extra argu-
ments and differences in behaviour.

Methods available in currently loaded packages:

e compute(): no methods found
e collect(): no methods found

e collapse(): no methods found

See Also

copy_to(), the opposite of collect(): it takes a local data frame and uploads it to the
remote source.

Examples

mtcars2 <- dbplyr::src_memdb() %>%
copy_to(mtcars, name = "mtcars2-cc”, overwrite = TRUE)

remote <- mtcars2 %>%
filter(cyl == 8) %>%
select(mpg:drat)

# Compute query and save in remote table
compute(remote)

# Compute query bring back to this session
collect(remote)

# Creates a fresh query based on the generated SQL
collapse(remote)

context Context dependent expressions

Description

These functions return information about the ”current” group or ”current” variable, so only
work inside specific contexts like summarise() and mutate()

e n() gives the current group size.

e cur_data() gives the current data for the current group (excluding grouping variables).

e cur_data_all() gives the current data for the current group (including grouping vari-
ables)

e cur_group() gives the group keys, a tibble with one row and one column for each
grouping variable.

e cur_group_id() gives a unique numeric identifier for the current group.
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e cur_group_rows() gives the row indices for the current group.

e cur_column() gives the name of the current column (in across() only).

See group_data() for equivalent functions that return values for all groups.

Usage
nQ
cur_data()
cur_data_all()
cur_group()
cur_group_id()
cur_group_rows ()

cur_column()

data.table

If you’re familiar with data.table:

e cur_data() j-; -SD
e cur_group_id() j-; .GRP
e cur_group() j-; -BY

e cur_group_rows() j-; .I

Examples

df <- tibble(
g = sample(rep(letters[1:3], 1:3)),
X = runif(6),
y = runif(6)

)

gf <- df %>% group_by(g)

gf %>% summarise(n = n())

gf %>% mutate(id = cur_group_id())

gf %>% summarise(row = cur_group_rows())

gf %>% summarise(data = list(cur_group()))
gf %>% summarise(data = list(cur_data()))

gf %>% summarise(data = list(cur_data_all()))

gf %>% mutate(across(everything(), ~ paste(cur_column(), round(.x, 2))))
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copy_to Copy a local data frame to a remote src

Description

This function uploads a local data frame into a remote data source, creating the table
definition as needed. Wherever possible, the new object will be temporary, limited to the
current connection to the source.

Usage
copy_to(dest, df, name = deparse(substitute(df)), overwrite = FALSE, ...)
Arguments
dest remote data source
df local data frame
name name for new remote table.
overwrite If TRUE, will overwrite an existing table with name name. If FALSE, will
throw an error if name already exists.
other parameters passed to methods.
Value

a tbl object in the remote source

See Also

collect() for the opposite action; downloading remote data into a local dbl.

Examples
## Not run:
iris2 <- dbplyr::src_memdb() %>% copy_to(iris, overwrite = TRUE)
iris2

## End(Not run)

count Count observations by group

Description

count () lets you quickly count the unique values of one or more variables: df %>% count(a,b)
is roughly equivalent to df %>% group_by(a,b) %>% summarise(n = n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()). Supply
wt to perform weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count() and tally() but use mutate()
instead of summarise() so that they add a new column with group-wise counts.
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Usage

count(x,
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., wt = NULL, sort = FALSE, name = NULL)

tally(x, wt = NULL, sort = FALSE, name = NULL)

add_count(x,

., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated())

add_tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

X

wt

sort

name

.drop

Value

A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr).

jdata-masking; Variables to group by.
jdata-masking; Frequency weights. Can be NULL or a variable:

e If NULL (the default), counts the number of rows in each group.
e If a variable, computes sum(wt) for each group.

If TRUE, will show the largest groups at the top.

The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
error, and require you to specify the name.

For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data). Deprecated in add_count() since
it didn’t actually affect the output.

An object of the same type as .data. count() and add_count() group transiently, so the
output has the same groups as the input.

Examples

# count() is a convenient way to get a sense of the distribution of
# values in a dataset

starwars %>%
starwars %>%
starwars %>%
starwars %>%

count(species)

count(species, sort = TRUE)

count(sex, gender, sort = TRUE)
count(birth_decade = round(birth_year, -1))

# use the ‘wt‘ argument to perform a weighted count. This is useful
# when the data has already been aggregated once

df <- tribble(

“name, “gender, “runs,
"Max", "male”, 10,
"Sandra”, "female", 1,
"Susan”, "female", 4

)

# counts rows:

df %>% count(gender)

# counts runs:

df %>% count(gender, wt = runs)
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# tally() is a lower-level function that assumes you've done the grouping

starwars %>% tally()
starwars %>% group_by(species) %>% tally()

# both count() and tally() have add_ variants that work like

# mutate() instead of summarise
df %>% add_count(gender, wt = runs)
df %>% add_tally(wt = runs)

cumall

cumall Cumulativate versions of any, all, and mean

Description

dplyr provides cumall(), cumany(), and cummean() to complete R’s set of cumulative func-

tions.

Usage

cumall(x)
cumany (x)

cummean(x)

Arguments

X For cumall() and cumany(), a logical vector; for cummean() an integer or

numeric vector.

Value

A vector the same length as x.

Cumulative logical functions

These are particularly useful in conjunction with filter():

e cumall(x): all cases until the first FALSE.
e cumall(!x): all cases until the first TRUE.
e cumany(x): all cases after the first TRUE.

e cumany(!x): all cases after the first FALSE.

Examples

# “cummean()" returns a numeric/integer vector of the same length

# as the input vector.
x <-c(1, 3,5, 2, 2)
cummean (x)

cumsum(x) / seq_along(x)

# ‘cumall()® and ‘cumany()® return logicals
cumall(x < 5)
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cumany(x == 3)

# ‘cumall()" vs. ‘cumany()*
df <- data.frame(
date = as.Date("2020-01-01") + 0:6,
balance = c(100, 50, 25, -25, -50, 30, 120)
)
# all rows after first overdraft
df %>% filter(cumany(balance < 0))
# all rows until first overdraft
df %>% filter(cumall(!(balance < 0)))

c.across Combine values from multiple columns

Description

c_across() is designed to work with rowwise() to make it easy to perform row-wise aggre-
gations. It has two differences from c():

o It uses tidy select semantics so you can easily select multiple variables. See vignette("rowwise")
for more details.

e It uses vectrs::vec_c() in order to give safer outputs.

Usage

c_across(cols = everything())

Arguments
cols jtidy-select; Columns to transform. Because across() is used within
functions like summarise() and mutate(), you can’t select or compute
upon grouping variables.
See Also

across() for a function that returns a tibble.

Examples

df <- tibble(id = 1:4, w = runif(4), x = runif(4), y = runif(4), z = runif(4))
df %>%
rowwise() %>%
mutate(
sum = sum(c_across(w:z)),
sd = sd(c_across(w:z))
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desc Descending order

Description
Transform a vector into a format that will be sorted in descending order. This is useful
within arrange().

Usage
desc(x)

Arguments

X vector to transform

Examples

desc(1:10)
desc(factor(letters))

first_day <- seq(as.Date(”1910/1/1"), as.Date("1920/1/1"), "years")
desc(first_day)

starwars %>% arrange(desc(mass))

distinct Subset distinct/unique rows

Description

Select only unique/distinct rows from a data frame. This is similar to unique.data. frame()
but considerably faster.

Usage
distinct(.data, ..., .keep_all = FALSE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
jdata-masking; Optional variables to use when determining uniqueness.
If there are multiple rows for a given combination of inputs, only the first
row will be preserved. If omitted, will use all variables.
.keep_all If TRUE, keep all variables in .data. If a combination of . .. is not distinct,

this keeps the first row of values.
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Value

An object of the same type as .data. The output has the following properties:

e Rows are a subset of the input but appear in the same order.

e Columns are not modified if ... is empty or .keep_all is TRUE. Otherwise, distinct()
first calls mutate() to create new columns.

e Groups are not modified.

Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

df <- tibble(

x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)
)
nrow(df)
nrow(distinct(df))

nrow(distinct(df, x, y))

distinct(df, x)
distinct(df, y)

# You can choose to keep all other variables as well
distinct(df, x, .keep_all = TRUE)
distinct(df, y, .keep_all = TRUE)

# You can also use distinct on computed variables
distinct(df, diff = abs(x - y))

# use across() to access select()-style semantics
distinct(starwars, across(contains(”color")))

# Grouping ————-———=———=—————
# The same behaviour applies for grouped data frames,
# except that the grouping variables are always included
df <- tibble(
g=c(1, 1, 2, 2),
x=c(, 1, 2, 1)
) %>% group_by(g)
df %>% distinct(x)
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explain FEzxplain details of a tbl

Description

This is a generic function which gives more details about an object than print(), and is
more focused on human readable output than str().

Usage
explain(x, ...)
show_query(x, ...)
Arguments
X An object to explain
Other parameters possibly used by generic
Value

The first argument, invisibly.

Databases

Explaining a tbl_sql will run the SQL EXPLAIN command which will describe the query
plan. This requires a little bit of knowledge about how EXPLAIN works for your database,
but is very useful for diagnosing performance problems.

Examples

lahman_s <- dbplyr::lahman_sqlite()
batting <- tbl(lahman_s, "Batting")
batting %>% show_query()

batting %>% explain()

# The batting database has indices on all ID variables:
# SQLite automatically picks the most restrictive index
batting %>% filter(1lgID == "NL" & yearID == 2000L) %>% explain()

# OR's will use multiple indexes
batting %>% filter(1gID == "NL" | yearID == 2000) %>% explain()

# Joins will use indexes in both tables
teams <- tbl(lahman_s, "Teams")
batting %>% left_join(teams, c("yearID", "teamID")) %>% explain()
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filter Subset rows using column values

Description

The filter() function is used to subset a data frame, retaining all rows that satisfy your
conditions. To be retained, the row must produce a value of TRUE for all conditions. Note
that when a condition evaluates to NA the row will be dropped, unlike base subsetting with

L.

Usage
filter(.data, ..., .preserve = FALSE)
Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
jdata-masking; Expressions that return a logical value, and are defined
in terms of the variables in .data. If multiple expressions are included,
they are combined with the & operator. Only rows for which all conditions
evaluate to TRUE are kept.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the
default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

Details

The filter() function is used to subset the rows of .data, applying the expressions in ...
to the column values to determine which rows should be retained. It can be applied to
both grouped and ungrouped data (see group_by() and ungroup()). However, dplyr is not
yet smart enough to optimise the filtering operation on grouped datasets that do not need
grouped calculations. For this reason, filtering is often considerably faster on ungrouped
data.

Value

An object of the same type as .data. The output has the following properties:

e Rows are a subset of the input, but appear in the same order.
e Columns are not modified.
e The number of groups may be reduced (if .preserve is not TRUE).

e Data frame attributes are preserved.

Useful filter functions

There are many functions and operators that are useful when constructing the expressions
used to filter the data:

e ==, > >=etc

® & |, !, xor()
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e is.na()

e between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results
on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking
function is involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))
With the grouped equivalent:
starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

In the ungrouped version, filter() compares the value of mass in each row to the global
average (taken over the whole data set), keeping only the rows with mass greater than this
global average. In contrast, the grouped version calculates the average mass separately
for each gender group, and keeps rows with mass greater than the relevant within-gender
average.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), rename(), select(), slice(), summarise()

Examples

# Filtering by one criterion
filter(starwars, species == "Human")
filter(starwars, mass > 1000)

# Filtering by multiple criteria within a single logical expression
filter(starwars, hair_color == "none" & eye_color == "black")
filter(starwars, hair_color == "none"” | eye_color == "black")

# When multiple expressions are used, they are combined using &
filter(starwars, hair_color == "none"”, eye_color == "black”)

# The filtering operation may yield different results on grouped
# tibbles because the expressions are computed within groups.

#

# The following filters rows where ‘mass‘ is greater than the

# global average:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))

# Whereas this keeps rows with ‘mass‘ greater than the gender
# average:
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starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

# To refer to column names that are stored as strings, use the ‘.data‘ pronoun:
vars <- c("mass"”, "height")
cond <- c(80, 150)

starwars %>%
filter(

.datal[[vars[[1]111] > cond[[11]],
.data[[vars[[2]]1] > cond[[2]]

)

# Learn more in ?dplyr_data_masking

filter-joins

Filtering joins

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

e semi_join() return all rows from x with a match in y.

e anti_join() return all rows from x without a match in y.

Usage

semi_join(x, y, by = NULL, copy = FALSE, ...)

## S3 method for class 'data.frame'
semi_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))

anti_join(x, y, by = NULL, copy = FALSE, ...)

## S3 method for class 'data.frame'

anti_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na"”, "never"))
Arguments
X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data

by

frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.

A character vector of variables to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can
check they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example,
by = c("a"” = "b") will match x$a to y$b.

To join by multiple variables, use a vector with length ; 1. For example,
by = c(”a"”,"b") will match x$a to y$a and x$b to y$b. Use a named
vector to match different variables in x and y. For example, by = c("a" =
"b","c" = "d") will match x$a to y$b and x$c to y$d.

To perform a cross-join, generating all combinations of x and y, use by =
character().
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copy If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

Other parameters passed onto methods.

na_matches Should NA and NaN values match one another?

The default, "na", treats two NA or NaN values as equal, like %in%, match(),
merge().

Use "never” to always treat two NA or NaN values as different, like joins
for database sources, similarly to merge(incomparables = FALSE).

Value

An object of the same type as x. The output has the following properties:

e Rows are a subset of the input, but appear in the same order.
e Columns are not modified.
e Data frame attributes are preserved.

e Groups are taken from x. The number of groups may be reduced.

Methods

These function are generics, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

Methods available in currently loaded packages:

e semi_join(): no methods found.

e anti_join(): no methods found.

See Also

Other joins: mutate-joins, nest_join()

Examples

# "Filtering" joins keep cases from the LHS
band_members %>% semi_join(band_instruments)
band_members %>% anti_join(band_instruments)

# To suppress the message about joining variables, supply ‘by*
band_members %>% semi_join(band_instruments, by = "name")
# This is good practice in production code
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glimpse Get a glimpse of your data

Description

glimpse() is like a transposed version of print(): columns run down the page, and data
runs across. This makes it possible to see every column in a data frame. It’s a little like
str() applied to a data frame but it tries to show you as much data as possible. (And it
always shows the underlying data, even when applied to a remote data source.)

glimpse() is provided by the pillar package, and re-exported by dplyr. See pillar::glimpse()
for more details.

Value

x original x is (invisibly) returned, allowing glimpse() to be used within a data pipeline.

Examples

glimpse(mtcars)

# Note that original x is (invisibly) returned, allowing ‘glimpse()‘ to be
# used within a pipeline.
mtcars %>%

glimpse() %>%

select(1:3)

glimpse(starwars)

group_by Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an ex-
isting tbl and converts it into a grouped tbl where operations are performed by group”.
ungroup() removes grouping.

Usage
group_by(.data, ..., .add = FALSE, .drop = group_by_drop_default(.data))
ungroup(x, ...)

Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame

(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
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In group_by(), variables or computations to group by. Computations are
always done on the ungrouped data frame. To perform computations on
the grouped data, you need to use a separate mutate() step before the
group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping.

.add When FALSE, the default, group_by() will override existing groups. To
add to the existing groups, use .add = TRUE.

This argument was previously called add, but that prevented creating a
new grouping variable called add, and conflicts with our naming conven-
tions.

.drop Drop groups formed by factor levels that don’t appear in the data? The
default is TRUE except when .data has been previously grouped with .drop
= FALSE. See group_by_drop_default() for details

X A tbl()

Value

A grouped data frame with class grouped_df, unless the combination of ... and add yields

a empty set of grouping columns, in which case a tibble will be returned.

Methods

These function are generics, which means that packages can provide implementations (meth-

ods) for other classes. See the documentation of individual methods for extra arguments

and differences in behaviour

Methods available in currently loaded packages:

e group_by(): no methods found.
e ungroup(): no methods found.

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

by_cyl <- mtcars %>% group_by(cyl)

# grouping doesn't change how the data looks (apart from listing
# how it's grouped):

by_cyl

# It changes how it acts with the other dplyr verbs:
by_cyl %>% summarise(
disp = mean(disp),

hp = mean(hp)
)

by_cyl %>% filter(disp == max(disp))

# Each call to summarise() removes a layer of grouping
by_vs_am <- mtcars %>% group_by(vs, am)
by_vs <- by_vs_am %>% summarise(n = n())

by_vs

by_vs %>% summarise(n = sum(n))
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# To removing grouping, use ungroup
by_vs %>%

ungroup() %>%

summarise(n = sum(n))

# By default, group_by() overrides existing grouping
by_cyl %>%

group_by(vs, am) %>%

group_vars()

# Use add = TRUE to instead append
by_cyl %>%
group_by(vs, am, .add = TRUE) %>%
group_vars()

# You can group by expressions: this is a short-hand
# for a mutate() followed by a group_by()
mtcars %>%

group_by(vsam = vs + am)

# The implicit mutate() step is always performed on the
# ungrouped data. Here we get 3 groups:
mtcars %>%

group_by(vs) %>%

group_by(hp_cut = cut(hp, 3))

# If you want it to be performed by groups,
# you have to use an explicit mutate() call.
# Here we get 3 groups per value of vs
mtcars %>%

group_by(vs) %>%

mutate(hp_cut = cut(hp, 3)) %>%

group_by(hp_cut)

# when factors are involved and .drop = FALSE, groups can be empty
tbl <- tibble(

x = 1:10,

y = factor(rep(c(”a", "c"), each = 5), levels = c("a", "b", "c"))
)
tbl %>%

group_by(y, .drop = FALSE) %>%

group_rows()

group_cols Select grouping variables

Description
This selection helpers matches grouping variables. It can be used in select() or vars()
selections.

Usage
group_cols(vars = NULL, data = NULL)
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Arguments
vars Deprecated; please use data instead.
data For advanced use only. The default NULL automatically finds the ” current”
data frames.
See Also

groups () and group_vars() for retrieving the grouping variables outside selection contexts.

Examples

gdf <- iris %>% group_by(Species)
gdf %>% select(group_cols())

# Remove the grouping variables from mutate selections:
gdf %>% mutate_at(vars(-group_cols()), /%, 100)
# -> No longer necessary with across()

gdf %>% mutate(across(everything(), =~ . / 100))
group_map Apply a function to each group
Description
[Experimental]

group_map(), group_modify() and group_walk() are purrr-style functions that can be used
to iterate on grouped tibbles.

Usage
group_map(.data, .f, ..., .keep = FALSE)
group_modify(.data, .f, ..., .keep = FALSE)

group_walk(.data, .f, ...)

Arguments
.data A grouped tibble
. A function or formula to apply to each group.

If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

e . or .x to refer to the subset of rows of .tbl for the given group

e .y to refer to the key, a one row tibble with one column per grouping
variable that identifies the group

Additional arguments passed on to .f

.keep are the grouping variables kept in .x
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Details

Use group_modify() when summarize() is too limited, in terms of what you need to do and
return for each group. group_modify() is good for ”data frame in, data frame out”. If that
is too limited, you need to use a nested or split workflow. group_modify() is an evolution
of do(), if you have used that before.

Each conceptual group of the data frame is exposed to the function .f with two pieces of
information:

e The subset of the data for the group, exposed as . x.

e The key, a tibble with exactly one row and columns for each grouping variable, exposed
as .y.

For completeness, group_-modify(), group_map and group_walk() also work on ungrouped
data frames, in that case the function is applied to the entire data frame (exposed as .x),
and .y is a one row tibble with no column, consistently with group_keys().

Value

e group_modify() returns a grouped tibble. In that case .f must return a data frame.
e group_map() returns a list of results from calling .f on each group.

e group_walk() calls .f for side effects and returns the input .tbl, invisibly.

See Also

Other grouping functions: group_by(), group_nest(), group_split(), group_trim()

Examples

# return a list

mtcars %>%
group_by(cyl) %>%
group_map(~ head(.x, 2L))

# return a tibble grouped by ‘cyl® with 2 rows per group
# the grouping data is recalculated
mtcars %>%

group_by(cyl) %>%

group_modify(~ head(.x, 2L))

# a list of tibbles
iris %>%
group_by(Species) %>%
group_map(~ broom::tidy(1lm(Petal.Length ~ Sepal.Length, data = .x)))

# a restructured grouped tibble
iris %>%
group_by(Species) %>%
group_modify (™ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))

# a list of vectors
iris %>%
group_by(Species) %>%
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group_map(~ quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)))

# to use group_modify() the lambda must return a data frame
iris %>%
group_by(Species) %>%
group_modify (™ {
quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)) %>%
tibble::enframe(name = "prob"”, value = "quantile")

D

iris %>%
group_by(Species) %>%
group_modify (™ {

X %>%
purrr::map_dfc(fivenum) %>%
mutate(nms = c("min", "Q1", "median”, "Q3", "max"))

»

# group_walk() is for side effects
dir.create(temp <- tempfile())
iris %>%
group_by(Species) %>%
group_walk(™ write.csv(.x, file = file.path(temp, paste@(.y$Species, ".csv"))))
list.files(temp, pattern = "csv$")
unlink(temp, recursive = TRUE)

# group_modify() and ungrouped data frames
mtcars %>%
group_modify(~ head(.x, 2L))

group_split Split data frame by groups

Description
[Experimental] group_split() works like base: :split() but

e it uses the grouping structure from group_by() and therefore is subject to the data
mask

e it does not name the elements of the list based on the grouping as this typically loses
information and is confusing.

group_keys() explains the grouping structure, by returning a data frame that has one row
per group and one column per grouping variable.

Usage

group_split(.tbl, ..., .keep = TRUE)
Arguments

.thl A tbl

. Grouping specification, forwarded to group_by()
.keep Should the grouping columns be kept
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Value

e group_split() returns a list of tibbles. Each tibble contains the rows of .tbl for the
associated group and all the columns, including the grouping variables.

e group_keys() returns a tibble with one row per group, and one column per grouping
variable

Grouped data frames

The primary use case for group_split() is with already grouped data frames, typically a
result of group_by(). In this case group_split() only uses the first argument, the grouped
tibble, and warns when . .. is used.

Because some of these groups may be empty, it is best paired with group_keys() which
identifies the representatives of each grouping variable for the group.

Ungrouped data frames

When used on ungrouped data frames, group_split() and group_keys() forwards the ...
to group_by () before the split, therefore the ... are subject to the data mask.

Using these functions on an ungrouped data frame only makes sense if you need only one
or the other, because otherwise the grouping algorithm is performed each time.

Rowwise data frames

group_split() returns a list of one-row tibbles is returned, and the ... are ignored and
warned against

See Also

Other grouping functions: group_by(), group_map(), group_nest(), group_trim()

Examples

#--—-- use case 1 : on an already grouped tibble
ir <- iris %>%
group_by(Species)

group_split(ir)
group_keys(ir)

# this can be useful if the grouped data has been altered before the split
ir <- iris %>%

group_by(Species) %>%

filter(Sepal.Length > mean(Sepal.Length))

group_split(ir)
group_keys(ir)

# --——- use case 2: using a group_by() grouping specification

# both group_split() and group_keys() have to perform the grouping
# so it only makes sense to do this if you only need one or the other
iris %>%

group_split(Species)
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iris %>%
group_keys(Species)

group_trim Trim grouping structure

Description

[Experimental] Drop unused levels of all factors that are used as grouping variables, then
recalculates the grouping structure.

group_trim() is particularly useful after a filter() that is intended to select a subset of
groups.

Usage

group_trim(.tbl, .drop = group_by_drop_default(.tbl))

Arguments
.tbl A grouped data frame
.drop See group_by()
Value

A grouped data frame

See Also
Other grouping functions: group_by(), group_map(), group_nest(), group_split()

Examples

iris %>%
group_by(Species) %>%
filter(Species == "setosa”, .preserve = TRUE) %>%
group_trim()

ident Flag a character vector as SQL identifiers

Description

ident() takes unquoted strings and flags them as identifiers. ident_q() assumes its input
has already been quoted, and ensures it does not get quoted again. This is currently used
only for for schema. table.

Usage

ident(...)
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Arguments

A character vector, or name-value pairs

Examples

# Identifiers are escaped with "

ident("x")

if_else Vectorised if

Description

Compared to the base ifelse(), this function is more strict. It checks that true and false
are the same type. This strictness makes the output type more predictable, and makes it
somewhat faster.

Usage

if_else(condition, true, false, missing = NULL)

Arguments
condition Logical vector
true, false Values to use for TRUE and FALSE values of condition. They must be
either the same length as condition, or length 1. They must also be
the same type: if_else() checks that they have the same type and same
class. All other attributes are taken from true.
missing If not NULL, will be used to replace missing values.
Value

Where condition is TRUE, the matching value from true, where it’s FALSE, the matching
value from false, otherwise NA.

Examples

x <= c(=5:5, NA)
if_else(x < @, NA_integer_, x)
if_else(x < @, "negative”, "positive”, "missing")

# Unlike ifelse, if_else preserves types

x <- factor(sample(letters[1:5], 10, replace = TRUE))
ifelse(x %in% c("a", "b", "c"), x, factor(NA))
if_else(x %in% c("a", "b", "c"), x, factor(NA))

# Attributes are taken from the ‘true‘ vector,
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lead-lag Compute lagged or leading values

Description

Find the ”previous” (lag()) or "next” (lead()) values in a vector. Useful for comparing
values behind of or ahead of the current values.

Usage
lag(x, n = 1L, default = NA, order_by = NULL, ...)
lead(x, n = 1L, default = NA, order_by = NULL, ...)
Arguments
X Vector of values
n Positive integer of length 1, giving the number of positions to lead or lag
by
default Value used for non-existent rows. Defaults to NA.
order_by Override the default ordering to use another vector or column
Needed for compatibility with lag generic.
Examples
lag(1:5)
lead(1:5)
x <= 1:5

tibble(behind = lag(x), x, ahead = lead(x))

ANURN

# If you want to look more rows behind or ahead, use
lag(1:5, n=1)

n

lag(1:5, n = 2)
lead(1:5, n = 1)
lead(1:5, n = 2)

# If you want to define a value for non-existing rows, use ‘default®
lag(1:5)
lag(1:5, default = 0)

lead(1:5)
lead(1:5, default = 6)

# If data are not already ordered, use ‘order_by*
scrambled <- slice_sample(tibble(year = 2000:2005, value = (0:5) " 2), prop = 1)

wrong <- mutate(scrambled, previous_year_value = lag(value))
arrange(wrong, year)

right <- mutate(scrambled, previous_year_value = lag(value, order_by = year))
arrange(right, year)
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mutate

Create, modify, and delete columns

Description

mutate() adds new variables and preserves existing ones; transmute() adds new variables
and drops existing ones. New variables overwrite existing variables of the same name.
Variables can be removed by setting their value to NULL.

Usage

mutate(.data, ...)

## S3 method for class 'data.frame'

mutate(
.data,
.keep = c("all”, "used”, "unused”, "none"),
.before = NULL,
.after = NULL
)
transmute(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
jdata-masking; Name-value pairs. The name gives the name of the col-
umn in the output.
The value can be:
e A vector of length 1, which will be recycled to the correct length.
e A vector the same length as the current group (or the whole data
frame if ungrouped).
e NULL, to remove the column.
e A data frame or tibble, to create multiple columns in the output.
.keep [Experimental] Control which columns from .data are retained in the

output. Grouping columns and columns created by ... are always kept.

"all” retains all columns from .data. This is the default.

"used” retains only the columns used in ... to create new columns.
This is useful for checking your work, as it displays inputs and outputs
side-by-side.

"unused” retains only the columns not used in ... to create new
columns. This is useful if you generate new columns, but no longer
need the columns used to generate them.

"none"” doesn’t retain any extra columns from .data. Only the group-
ing variables and columns created by ... are kept.
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.before, .after
[Experimental] jtidy-select; Optionally, control where new columns should
appear (the default is to add to the right hand side). See relocate() for
more details.

Value
An object of the same type as .data. The output has the following properties:

e For mutate():

— Columns from .data will be preserved according to the .keep argument.

— Existing columns that are modified by ... will always be returned in their original
location.
— New columns created through ... will be placed according to the .before and

.after arguments.

For transmute():

— Columns created or modified through ... will be returned in the order specified
by ....

— Unmodified grouping columns will be placed at the front.
e The number of rows is not affected.
e Columns given the value NULL will be removed.
e Groups will be recomputed if a grouping variable is mutated.

e Data frame attributes are preserved.

Useful mutate functions

e + - log(), etc., for their usual mathematical meanings

e lead(), lag()

e dense_rank(), min_rank(), percent_rank(), row_number (), cume_dist(), ntile()
e cumsum(), cummean(), cummin(), cummax(), cumany(), cumall()

e na_if (), coalesce()

e if_else(), recode(), case_when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results
on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking
function is involved. Compare this ungrouped mutate:

starwars %>%
select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>%
select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

The former normalises mass by the global average whereas the latter normalises by the
averages within species levels.
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Methods

These function are generics, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

Methods available in currently loaded packages:

e mutate(): no methods found.

e transmute(): no methods found.

See Also

Other single table verbs: arrange(), filter(), rename(), select(), slice(), summarise()

Examples

# Newly created variables are available immediately
starwars %>%

select(name, mass) %>%

mutate(

mass2 = mass * 2,

mass2_squared = mass2 * mass2

)

# As well as adding new variables, you can use mutate() to
# remove variables and modify existing variables.

starwars %>%

select(name, height, mass, homeworld) %>%

mutate(

mass = NULL,

height = height * 0.0328084 # convert to feet
)

# Use across() with mutate() to apply a transformation
# to multiple columns in a tibble.

starwars %>%

select(name, homeworld, species) %>%
mutate(across(!name, as.factor))
# see more in ?across

# Window functions are useful for grouped mutates:
starwars %>%

select(name, mass, homeworld) %>%

group_by (homeworld) %>%

mutate(rank = min_rank(desc(mass)))
# see ‘vignette("window-functions”)" for more details

# By default, new columns are placed on the far right.
# Experimental: you can override with ‘.before‘ or ‘.after®
df <- tibble(x =1, y = 2)

df %>% mutate(z = x + y)
df %>% mutate(z = x + y, .before = 1)
df %>% mutate(z = x + y, .after = x)

# By default, mutate() keeps all columns from the input data.
# Experimental: You can override with ‘.keep®
df <- tibble(x =1, y =2, a="a", b ="b")
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df %>% mutate(z = x +y, .keep = "all") # the default

df %>% mutate(z = x + y, .keep = "used")

df %>% mutate(z = x +y, .keep = "unused")

df %>% mutate(z = x + y, .keep = "none") # same as transmute()

# Grouping ————-———-———=———-—
# The mutate operation may yield different results on grouped
# tibbles because the expressions are computed within groups.
# The following normalises ‘mass‘ by the global average:
starwars %>%

select(name, mass, species) %>%

mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

# Whereas this normalises ‘mass‘ by the averages within species
# levels:
starwars %>%

select(name, mass, species) %>%

group_by(species) %>%

mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

# Indirection ------------————----—-—m oo

# Refer to column names stored as strings with the ‘.data‘ pronoun:
vars <- c("mass"”, "height")

mutate(starwars, prod = .data[[vars[[1]1]1]] * .datal[[vars[[2]1]111)

# Learn more in ?dplyr_data_masking

mutate-joins Mutating joins

Description

The mutating joins add columns from y to x, matching rows based on the keys:

e inner_join(): includes all rows in x and y.

left_join(): includes all rows in x.

right_join(): includes all rows in y.

full_join(): includes all rows in x or y.

If a row in x matches multiple rows in y, all the rows in y will be returned once for each
matching row in x.

Usage

inner_join(
X,
Y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
keep = FALSE
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## S3 method for class 'data.frame'
inner_join(

X!

Y,

by = NULL,
copy = FALSE,

suffix = C(”.X", Il'y”),
keep = FALSE,
na_matches = c("na", "never")

)

left_join(
X)
Y,
by = NULL,
copy = FALSE,
suffix = c(”.x",

"y,
keep = FALSE
)
## S3 method for class 'data.frame'
left_join(
X,
Y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),

keep = FALSE,

na_matches = c(”"na", "never")
)
right_join(

X,

Y,

by = NULL,

copy = FALSE,

n n

suffix = c(".x", ".y"),
keep = FALSE
)

## S3 method for class 'data.frame'
right_join(

X,

Y,

by = NULL,
copy = FALSE,

n n

suffix = c(".x", ".y"),

°
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c("na", "never")

n n

x", oy,

## S3 method for class 'data.frame'

keep = FALSE,
na_matches =

)

full_join(
X,
Y,
by = NULL,
copy = FALSE,
suffix = c(".
keep = FALSE

)

full_join(
X,
Y,
by = NULL,
copy = FALSE,
suffix = c(".
keep = FALSE,
na_matches =

)

Arguments

X,y

by

copy

suffix

keep

n n

X ’ 'y”)7

c("na", "never")

A pair of data frames, data frame extensions (e.g. a tibble), or lazy data
frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.

A character vector of variables to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can
check they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example,
by = c("a"” = "b") will match x$a to y$b.

To join by multiple variables, use a vector with length ; 1. For example,
by = c("a","b") will match x$a to y$a and x$b to y$b. Use a named
vector to match different variables in x and y. For example, by = c("a" =
"b","c" ="d") will match x$a to y$b and x$c to y$d.

To perform a cross-join, generating all combinations of x and y, use by =
character().

If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

If there are non-joined duplicate variables in x and y, these suffixes will be
added to the output to disambiguate them. Should be a character vector
of length 2.

Other parameters passed onto methods.

Should the join keys from both x and y be preserved in the output?
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na_matches

Value
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Should NA and NaN values match one another?

The default, "na", treats two NA or NaN values as equal, like %in%, match(),
merge().

Use "never” to always treat two NA or NaN values as different, like joins
for database sources, similarly to merge(incomparables = FALSE).

An object of the same type as x. The order of the rows and columns of x is preserved as
much as possible. The output has the following properties:

e For inner_join(), a subset of x rows. For left_join(), all x rows. For right_join(), a
subset of x rows, followed by unmatched y rows. For full_join(), all x rows, followed
by unmatched y rows.

e For all joins, rows will be duplicated if one or more rows in x matches multiple rows

iny.

e Output columns include all x columns and all y columns. If columns in x and y have
the same name (and aren’t included in by), suffixes are added to disambiguate.

e Output columns included in by are coerced to common type across x and y.

e Groups are taken from x.

Methods

These functions are generics, which means that packages can provide implementations
(methods) for other classes. See the documentation of individual methods for extra argu-
ments and differences in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.

e left_join(): no methods found.

e right_join(): no methods found.

e full_join(): no methods found.

See Also

Other joins: filter-joins, nest_join()

Examples

band_members %>%
band_members %>%
band_members %>%
band_members %>%

inner_join(band_instruments)
left_join(band_instruments)
right_join(band_instruments)
full_join(band_instruments)

# To suppress the message about joining variables, supply ‘by*

band_members %>%

inner_join(band_instruments, by = "name")

# This is good practice in production code

# Use a named ‘by"‘ if the join variables have different names

band_members %>%

full_join(band_instruments2, by = c("name” = "artist"))

# By default, the join keys from ‘x* and ‘y‘ are coalesced in the output; use
# “‘keep = TRUE' to keep the join keys from both ‘x‘ and ‘y*

band_members %>%
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full_join(band_instruments2, by = c("name” = "artist”), keep = TRUE)

[NRURN

# If a row in ‘x* matches multiple rows in ‘y*, all the rows in ‘y‘ will be
# returned once for each matching row in “x*

df1 <- tibble(x = 1:3)

df2 <- tibble(x = c(1, 1, 2), y = c("first”, "second”, "third"))
df1 %>% left_join(df2)

# By default, NAs match other NAs so that there are two
# rows in the output of this join:
df1 <- data.frame(x = c(1, NA), y
df2 <- data.frame(x = c(1, NA), z
left_join(df1, df2)

2)
3

# You can optionally request that NAs don't match, giving a
# a result that more closely resembles SQL joins
left_join(df1, df2, na_matches = "never")

na_if Convert values to NA

Description
This is a translation of the SQL command NULLIF. It is useful if you want to convert an
annoying value to NA.

Usage

na_if(x, y)

Arguments

X Vector to modify
y Value to replace with NA

Value

A modified version of x that replaces any values that are equal to y with NA.

See Also
coalesce() to replace missing values with a specified value.
tidyr::replace_na() to replace NA with a value.

recode() to more generally replace values.

Examples
na_if(1:5, 5:1)
x <= c(1, -1, 0, 10)

100 / x
100 / na_if(x, @)
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y <- C(”abc”, "def”, nu’ ”ghi”)
na_if(y, "")

# na_if () is particularly useful inside mutate(),
# and is meant for use with vectors rather than entire data frames
starwars %>%

select(name, eye_color) %>%

mutate(eye_color = na_if(eye_color, "unknown"))

# na_if () can also be used with mutate() and across()
# to mutate multiple columns
starwars %>%
mutate(across(where(is.character), “na_if(., "unknown")))
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near Compare two numeric vectors

Description

This is a safe way of comparing if two vectors of floating point numbers are (pairwise) equal.

This is safer than using ==, because it has a built in tolerance

Usage
near(x, y, tol = .Machine$double.eps”0.5)

Arguments
X, Y Numeric vectors to compare
tol Tolerance of comparison.
Examples
sqrt(2) * 2 ==

near(sqrt(2) * 2, 2)

nest_join Nest join

Description

nest_join() returns all rows and columns in x with a new nested-df column that contains

all matches from y. When there is no match, the list column is a 0-row tibble.

Usage
nest_join(x, y, by = NULL, copy = FALSE, keep = FALSE, name
## S3 method for class 'data.frame'
nest_join(x, y, by = NULL, copy = FALSE, keep = FALSE, name

NULL,

NULL,

)

.2
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Arguments

X,y

by

copy

keep

name

Details

nest_join

A pair of data frames, data frame extensions (e.g. a tibble), or lazy data
frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
A character vector of variables to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can
check they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example,
by = c("a"” = "b") will match x$a to y$b.

To join by multiple variables, use a vector with length ; 1. For example,
by = c("a","b") will match x$a to y$a and x$b to y$b. Use a named
vector to match different variables in x and y. For example, by = c("a" =
"b","c" = "d") will match x$a to y$b and x$c to y$d.

To perform a cross-join, generating all combinations of x and y, use by =
character().

If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

Should the join keys from both x and y be preserved in the output?

The name of the list column nesting joins create. If NULL the name of y
is used.

Other parameters passed onto methods.

In some sense, a nest_join() is the most fundamental join since you can recreate the other

joins from it:

e inner_join() is a nest_join() plus tidyr: :unnest()

e left_join() nest_join() plus unnest(.drop = FALSE).

e semi_join() is a nest_join() plus a filter() where you check that every element of
data has at least one row,

e anti_join() is a nest_join() plus a filter() where you check every element has zero

TOWS.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other joins: filter-joins, mutate-joins

Examples

band_members %>% nest_join(band_instruments)
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nth Ezxtract the first, last or nth value from a vector

Description

These are straightforward wrappers around [[. The main advantage is that you can provide
an optional secondary vector that defines the ordering, and provide a default value to use
when the input is shorter than expected.

Usage

nth(x, n, order_by = NULL, default = default_missing(x))
first(x, order_by = NULL, default = default_missing(x))

last(x, order_by = NULL, default = default_missing(x))

Arguments
X A vector
For nth(), a single integer specifying the position. Negative integers index
from the end (i.e. -1L will return the last value in the vector).
If a double is supplied, it will be silently truncated.
order_by An optional vector used to determine the order
default A default value to use if the position does not exist in the input. This is
guessed by default for base vectors, where a missing value of the appro-
priate type is returned, and for lists, where a NULL is return.
For more complicated objects, you’ll need to supply this value. Make sure
it is the same type as x.
Value

A single value. [[ is used to do the subsetting.

Examples

X <= 1:10
y <= 10:1

first(x)
last(y)

nth(x, 1)
nth(x, 5)
nth(x, -2)
nth(x, 11)

last(x)
# Second argument provides optional ordering
last(x, y)

# These functions always return a single value
first(integer())
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ndistinct Efficiently count the number of unique values in a set of vectors

Description

This is a faster and more concise equivalent of length(unique(x))

Usage
n_distinct(..., na.rm = FALSE)
Arguments
vectors of values
na.rm if TRUE missing values don’t count
Examples

x <- sample(1:10, 1e5, rep = TRUE)
length(unique(x))
n_distinct(x)

order_by A helper function for ordering window function output

Description

This function makes it possible to control the ordering of window functions in R that don’t

have a specific ordering parameter. When translated to SQL it will modify the order clause
of the OVER function.

Usage

order_by(order_by, call)

Arguments
order_by a vector to order_by
call a function call to a window function, where the first argument is the vector
being operated on
Details

This function works by changing the call to instead call with_order () with the appropriate
arguments.
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order_by(10:1, cumsum(1:10))

x <= 10:1
y <-1:10

order_by(x, cumsum(y))

df <- data.frame(year = 2000:2005, value = (0:5) " 2)
scrambled <- df[sample(nrow(df)), 1]

wrong <- mutate(scrambled, running = cumsum(value))
arrange(wrong, year)

right <- mutate(scrambled, running = order_by(year, cumsum(value)))
arrange(right, year)

pull

Extract a single column

Description

pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works
with remote data frames, and it can optionally name the output.

Usage
pull(.data, var = -1, name = NULL, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
var A variable specified as:
e a literal variable name
e a positive integer, giving the position counting from the left
e a negative integer, giving the position counting from the right.
The default returns the last column (on the assumption that’s the column
you’ve created most recently).
This argument is taken by expression and supports quasiquotation (you
can unquote column names and column locations).
name An optional parameter that specifies the column to be used as names for
a named vector. Specified in a similar manner as var.
For use by methods.
Value

A vector the same size as .data.
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Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

mtcars %>% pull(-1)
mtcars %>% pull(1)
mtcars %>% pull(cyl)

# Also works for remote sources
df <- dbplyr::memdb_frame(x = 1:10, y = 10:1, .name = "pull-ex")
df %>%

mutate(z = x * y) %>%

pull()

# Pull a named vector
starwars %>% pull(height, name)

ranking Windowed rank functions.

Description

Six variations on ranking functions, mimicking the ranking functions described in SQL2003.
They are currently implemented using the built in rank function, and are provided mainly
as a convenience when converting between R and SQL. All ranking functions map smallest
inputs to smallest outputs. Use desc() to reverse the direction.

Usage

row_number (x)

ntile(x = row_number(), n)
min_rank(x)

dense_rank(x)
percent_rank(x)

cume_dist(x)

Arguments
X a vector of values to rank. Missing values are left as is. If you want to
treat them as the smallest or largest values, replace with Inf or -Inf before
ranking.

n number of groups to split up into.
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Details

e row_number(): equivalent to rank(ties.method = "first")

e min_rank(): equivalent to rank(ties.method = "min”

e dense_rank(): like min_rank(), but with no gaps between ranks

e percent_rank(): a number between 0 and 1 computed by rescaling min_rank to [0, 1]

e cume_dist(): a cumulative distribution function. Proportion of all values less than or
equal to the current rank.

e ntile(): a rough rank, which breaks the input vector into n buckets. The size of the
buckets may differ by up to one, larger buckets have lower rank.

Examples

x <= c(5, 1, 3, 2, 2, NA)
row_number (x)

min_rank(x)

dense_rank(x)
percent_rank(x)
cume_dist(x)

ntile(x, 2)
ntile(1:8, 3)

# row_number can be used with single table verbs without specifying x
# (for data frames and databases that support windowing)
mutate(mtcars, row_number() == 1L)

mtcars %>% filter(between(row_number(), 1, 10))

recode Recode values

Description

This is a vectorised version of switch(): you can replace numeric values based on their
position or their name, and character or factor values only by their name. This is an S3
generic: dplyr provides methods for numeric, character, and factors. For logical vectors,
use if_else(). For more complicated criteria, use case_when().

You can use recode() directly with factors; it will preserve the existing order of levels while
changing the values. Alternatively, you can use recode_factor(), which will change the
order of levels to match the order of replacements. See the forcats package for more tools
for working with factors and their levels.

recode() is questioning because the arguments are in the wrong order. We have new <-old,
mutate(df,new = 0ld), and rename(df,new = old) but recode(x,o0ld = new). We don’t yet
know how to fix this problem, but it’s likely to involve creating a new function then retiring
or deprecating recode().

Usage
recode(.x, ..., .default = NULL, .missing = NULL)

recode_factor(.x, ..., .default = NULL, .missing = NULL, .ordered = FALSE)


https://forcats.tidyverse.org/
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Arguments

X

.default

.missing

.ordered

Value

recode

A vector to modify

jdynamic-dots; Replacements. For character and factor .x, these should
be named and replacement is based only on their name. For numeric .x,
these can be named or not. If not named, the replacement is done based
on position i.e. .x represents positions to look for in replacements. See
examples.

When named, the argument names should be the current values to be re-
placed, and the argument values should be the new (replacement) values.

All replacements must be the same type, and must have either length one
or the same length as .x.

If supplied, all values not otherwise matched will be given this value. If
not supplied and if the replacements are the same type as the original
values in .x, unmatched values are not changed. If not supplied and if
the replacements are not compatible, unmatched values are replaced with
NA.

.default must be either length 1 or the same length as .x.

If supplied, any missing values in .x will be replaced by this value. Must
be either length 1 or the same length as .x.

If TRUE, recode_factor() creates an ordered factor.

A vector the same length as . x, and the same type as the first of ..., .default, or .missing.
recode_factor() returns a factor whose levels are in the same order as in .... The levels
in .default and .missing come last.

See Also

na_if () to replace specified values with a NA.

coalesce() to replace missing values with a specified value.

tidyr::replace_na() to replace NA with a value.

Examples

# For character values, recode values with named arguments only. Unmatched
# values are unchanged.

char_vec <- sample(c("a”, "b", "c"), 10, replace = TRUE)

recode(char_vec, a = "Apple”)

recode(char_vec, a = "Apple”, b = "Banana")

# Use .default as replacement for unmatched values. Note that NA and

# replacement values need to be of the same type. For more information, see
# https://adv-r.hadley.nz/vectors-chap.html#missing-values

recode(char_vec, a = "Apple”, b = "Banana”, .default = NA_character_)

# Throws an error as NA is logical, not character.
try(recode(char_vec, a = "Apple”, b = "Banana”, .default = NA))

# Use a named character vector for unquote splicing with !!!

level _key <- c(a

= "apple”, b = "banana”, ¢ = "carrot")

recode(char_vec, !!!level_key)
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# For numeric values, named arguments can also be used
num_vec <- c(1:4, NA)
recode(num_vec, ‘2% = 20L, ‘4% = 40L)

# Or if you don't name the arguments, recode() matches by position.

# (Only works for numeric vector)

recode(num_vec, "a", "b", "c", "d")

# .x (position given) looks in (...), then grabs (... value at position)
# so if nothing at position (here 5), it uses .default or NA.
recode(c(1,5,3), "a", "b", "c", "d", .default = "nothing")

# Note that if the replacements are not compatible with .x,
# unmatched values are replaced by NA and a warning is issued.

recode(num_vec, ‘2% = "b", ‘4 = "d")

# use .default to change the replacement value

recode(num_vec, "a", "b", "c", .default = "other")

# use .missing to replace missing values in .x

recode(num_vec, "a", "b", "c", .default = "other”, .missing = "missing")

# For factor values, use only named replacements

# and supply default with levels()

factor_vec <- factor(c("a", "b", "c"))

recode(factor_vec, a = "Apple”, .default = levels(factor_vec))

# Use recode_factor() to create factors with levels ordered as they
# appear in the recode call. The levels in .default and .missing
# come last.

recode_factor(num_vec, 1% = "z" ‘2% = "y" 3% = "x")

recode_factor(num_vec, *1% = "z" ‘2% = "y" 3% = "x",
.default = "D")

recode_factor(num_vec, ‘1% = "z" ‘2% = "y" 3% = "x",

.default = "D", .missing = "M")

# When the input vector is a compatible vector (character vector or
# factor), it is reused as default.

recode_factor(letters[1:3], b = "z", ¢ = "y")
recode_factor(factor(letters[1:3]), b = "z", ¢ = "y")

# Use a named character vector to recode factors with unquote splicing.

level_key <- c(a = "apple”, b = "banana”, c = "carrot")
recode_factor(char_vec, !!!level_key)
relocate Change column order
Description

Use relocate() to change column positions, using the same syntax as select() to make it
easy to move blocks of columns at once.

Usage

relocate(.data, ..., .before = NULL, .after = NULL)
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Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

jtidy-select; Columns to move.

.before, .after
jtidy-select; Destination of columns selected by . ... Supplying neither
will move columns to the left-hand side; specifying both is an error.

Value

An object of the same type as .data. The output has the following properties:

e Rows are not affected.
e The same columns appear in the output, but (usually) in a different place.
e Data frame attributes are preserved.

e Groups are not affected.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

df <- tibble(a =1, b =1, c=1,d="a", e="a", f="a")
df %>% relocate(f)

df %>% relocate(a, .after = ¢)

df %>% relocate(f, .before = b)

df %>% relocate(a, .after = last_col())

# relocated columns can change name
df %>% relocate(ff = f)

# Can also select variables based on their type

df %>% relocate(where(is.character))

df %>% relocate(where(is.numeric), .after = last_col())
# Or with any other select helper

df %>% relocate(any_of(c("a", "e", "i", "o", "u")))

# When .before or .after refers to multiple variables they will be
# moved to be immediately before/after the selected variables.

df2 <- tibble(a =1, b="a", c=1, d = "a")

df2 %>% relocate(where(is.numeric), .after = where(is.character))
df2 %>% relocate(where(is.numeric), .before = where(is.character))
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rename Rename columns

Description

rename() changes the names of individual variables using new_name = old_name syntax;
rename_with() renames columns using a function.

Usage
rename(.data, ...)
rename_with(.data, .fn, .cols = everything(), ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
For rename(): jtidy-select; Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.
.fn A function used to transform the selected .cols. Should return a char-
acter vector the same length as the input.
.cols jtidy-select; Columns to rename; defaults to all columns.
Value

An object of the same type as .data. The output has the following properties:

e Rows are not affected.
e Column names are changed; column order is preserved.
e Data frame attributes are preserved.

e Groups are updated to reflect new names.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), select(), slice(), summarise()
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Examples

iris <- as_tibble(iris) # so it prints a little nicer
rename(iris, petal_length = Petal.lLength)

rename_with(iris, toupper)
rename_with(iris, toupper, starts_with("Petal"”))
rename_with(iris, tolower(gsub("."”, "_", .x, fixed = TRUE)))

rows Manipulate individual rows

Description

[Experimental]

These functions provide a framework for modifying rows in a table using a second table of
data. The two tables are matched by a set of key variables whose values typically uniquely
identify each row. The functions are inspired by SQL’s INSERT, UPDATE, and DELETE, and
can optionally modify in_place for selected backends.

e rows_insert() adds new rows (like INSERT). By default, key values in y must not exist
in x.
e rows_append() works like rows_insert() but ignores keys.

e rows_update() modifies existing rows (like UPDATE). Key values in y must be unique,
and, by default, key values in y must exist in x.

e rows_patch() works like rows_update() but only overwrites NA values.

e rows_upsert() inserts or updates depending on whether or not the key value in y
already exists in x. Key values in y must be unique.

e rows_delete() deletes rows (like DELETE). By default, key values in y must exist in x.

Usage

rows_insert(
X)
Y,
by = NULL,
conflict = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE

)

rows_append(x, y, ..., copy = FALSE, in_place = FALSE)

rows_update(
X’
Y,
by = NULL,

L

unmatched = c("error”, "ignore"),
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copy = FALSE,
in_place = FALSE
)
rows_patch(
X,
Y,
by = NULL,
unmatched = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_upsert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)
rows_delete(
X y
Y,
by = NULL,
unmatched = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE
)
Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must
have the same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns
must exist in both x and y. Keys typically uniquely identify each row,
but this is only enforced for the key values of y when rows_update(),
rows_patch(), or rows_upsert() are used.
By default, we use the first column in y, since the first column is a rea-
sonable place to put an identifier variable.
Other parameters passed onto methods.
conflict For rows_insert(), how should keys in y that conflict with keys in x be
handled? A conflict arises if there is a key in y that already exists in x.
One of:
e "error”, the default, will error if there are any keys in y that conflict
with keys in x.
e "ignore” will ignore rows in y with keys that conflict with keys in x.
copy If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.
in_place Should x be modified in place? This argument is only relevant for mutable

backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a
new object representing the resulting changes is returned.
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unmatched For rows_update(), rows_patch(), and rows_delete(), how should keys
in y that are unmatched by the keys in x be handled?
One of:

e "error"”, the default, will error if there are any keys in y that are
unmatched by the keys in x.

e "ignore” will ignore rows in y with keys that are unmatched by the
keys in x.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as
much as possible. The output has the following properties:

e rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete()
returns a subset of the rows.

e Columns are not added, removed, or relocated, though the data may be updated.
e Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Examples

data <- tibble(a = 1:3, b = letters[c(1:2, NA)], ¢ = 0.5 + 0:2)
data

# Insert
rows_insert(data, tibble(a = 4, b = "z"))

[NAURN

# By default, if a key in ‘y‘ matches a key in ‘x‘, then it can't be inserted
# and will throw an error. Alternatively, you can ignore rows in ‘y*
# containing keys that conflict with keys in “x“ with ‘conflict = "ignore"",
# or you can use ‘rows_append()* to ignore keys entirely.
try(rows_insert(data, tibble(a = 3, b = "z")))

rows_insert(data, tibble(a = 3, b = "z"), conflict = "ignore")

rows_append(data, tibble(a = 3, b = "z"))
# Update
rows_update(data, tibble(a = 2:3, b = "z"))

rows_update(data, tibble(b = "z",

)]

= 2:3), by = "a")

# Variants: patch and upsert
rows_patch(data, tibble(a = 2:3, b = "z"))
rows_upsert(data, tibble(a = 2:4, b = "z"))

# Delete and truncate
rows_delete(data, tibble(a
rows_delete(data, tibble(a

1
NN

, b - ubn))

# By default, for update, patch, and delete it is an error if a key in ‘y*

[NRN

# doesn't exist in ‘x‘. You can ignore rows in ‘y‘ that have unmatched keys
# with ‘unmatched = "ignore"*.
y <- tibble(a = 3:4, b = "z")

try(rows_update(data, y, by = "a"))
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rows_update(data, y, by = "a", unmatched = "ignore")
rows_patch(data, y, by = "a", unmatched = "ignore")
rows_delete(data, y, by = "a", unmatched = "ignore")
rowwise Group input by rows
Description

rowwvise() allows you to compute on a data frame a row-at-a-time. This is most useful
when a vectorised function doesn’t exist.

Most dplyr verbs preserve row-wise grouping. The exception is summarise(), which return
a grouped_df. You can explicitly ungroup with ungroup() or as_tibble(), or convert to a
grouped_df with group_by().

Usage
rowwise(data, ...)
Arguments
data Input data frame.
jtidy-select; Variables to be preserved when calling summarise(). This
is typically a set of variables whose combination uniquely identify each
TOW.
NB: unlike group_by() you can not create new variables here but instead
you can select multiple variables with (e.g.) everything().
Value

A row-wise data frame with class rowwise_df. Note that a rowwise_df is implicitly grouped
by row, but is not a grouped_df.

List-columns

Because a rowwise has exactly one row per group it offers a small convenience for working
with list-columns. Normally, summarise() and mutate() extract a groups worth of data
with [. But when you index a list in this way, you get back another list. When you're
working with a rowwise tibble, then dplyr will use [[ instead of [ to make your life a little
easier.

See Also

nest_by() for a convenient way of creating rowwise data frames with nested data.
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Examples

df <- tibble(x = runif(6), y = runif(6), z = runif(6))
# Compute the mean of x, y, z in each row

df %>% rowwise() %>% mutate(m = mean(c(x, y, z)))

# use c_across() to more easily select many variables
df %>% rowwise() %>% mutate(m = mean(c_across(x:z)))

# Compute the minimum of x and y in each row

df %>% rowwise() %>% mutate(m = min(c(x, y, z)))

# In this case you can use an existing vectorised function:

df %>% mutate(m = pmin(x, y, z))

# Where these functions exist they'll be much faster than rowwise
# so be on the lookout for them.

# rowwise() is also useful when doing simulations
params <- tribble(
“sim, “n, “mean, “sd,
1, 1, 1
2, 2, 2, 4,
3, -1, 2
# Here I supply variables to preserve after the summary
params %>%

rowwise(sim) %>%
summarise(z = rnorm(n, mean, sd))

# If you want one row per simulation, put the results in a list()
params %>%

rowwise(sim) %>%

summarise(z = list(rnorm(n, mean, sd)))

scoped Operate on a selection of variables

Description

[Superseded|

Scoped verbs (.if, _at, _all) have been superseded by the use of across() in an existing
verb. See vignette(”colwise"”) for details.

The variants suffixed with _if, _at or _all apply an expression (sometimes several) to all
variables within a specified subset. This subset can contain all variables (_all variants), a
vars() selection (_at variants), or variables selected with a predicate (_if variants).

The verbs with scoped variants are:

mutate(), transmute() and summarise(). See summarise_all().
filter(). See filter_all().
group_by(). See group_by_all().

rename() and select(). See select_all().

arrange(). See arrange_all()

There are three kinds of scoped variants. They differ in the scope of the variable selection
on which operations are applied:
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e Verbs suffixed with _all() apply an operation on all variables.

e Verbs suffixed with _at() apply an operation on a subset of variables specified with the
quoting function vars(). This quoting function accepts tidyselect::vars_select()
helpers like starts_with(). Instead of a vars() selection, you can also supply an
integerish vector of column positions or a character vector of column names.

e Verbs suffixed with _if() apply an operation on the subset of variables for which a
predicate function returns TRUE. Instead of a predicate function, you can also supply
a logical vector.

Arguments
.tbl A tbl object.
.funs A function fun, a quosure style lambda ~ fun(.) or a list of either form.
.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.
.predicate A predicate function to be applied to the columns or a logical vector.

The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as_function() and thus supports quosure-
style lambda functions and strings representing function names.

Additional arguments for the function calls in . funs. These are evaluated
only once, with tidy dots support.

Grouping variables

Most of these operations also apply on the grouping variables when they are part of the
selection. This includes:

e arrange_all(), arrange_at(), and arrange_if()

e distinct_all(), distinct_at(), and distinct_if ()
filter_all(), filter_at(), and filter_if()

group_by_all(), group_by_at(), and group_by_if()

select_all(), select_at(), and select_if()

This is not the case for summarising and mutating variants where operations are not applied
on grouping variables. The behaviour depends on whether the selection is implicit (all and
if selections) or explicit (at selections). Grouping variables covered by explicit selections
(with summarise_at(), mutate_at(), and transmute_at()) are always an error. For implicit
selections, the grouping variables are always ignored. In this case, the level of verbosity
depends on the kind of operation:

e Summarising operations (summarise_all() and summarise_if()) ignore grouping vari-
ables silently because it is obvious that operations are not applied on grouping vari-
ables.

e On the other hand it isn’t as obvious in the case of mutating operations (mutate_all(),
mutate_if (), transmute_all(), and transmute_if()). For this reason, they issue a
message indicating which grouping variables are ignored.
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select Subset columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language
that makes it easy to refer to variables based on their name (e.g. a:f selects all columns
from a on the left to f on the right). You can also use predicate functions like is.numeric
to select variables based on their properties.

Overview of selection features:
Tidyverse selections implement a dialect of R where operators make it easy to select
variables:
e : for selecting a range of consecutive variables.
e ! for taking the complement of a set of variables.
e & and | for selecting the intersection or the union of two sets of variables.
e c() for combining selections.
In addition, you can use selection helpers. Some helpers select specific columns:
e everything(): Matches all variables.
e last_col(): Select last variable, possibly with an offset.

These helpers select variables by matching patterns in their names:

e starts_with(): Starts with a prefix.
e ends_with(): Ends with a suffix.
e contains(): Contains a literal string.
e matches(): Matches a regular expression.
e num_range(): Matches a numerical range like x01, x02, x03.
These helpers select variables from a character vector:
e all_of(): Matches variable names in a character vector. All names must be present,
otherwise an out-of-bounds error is thrown.
e any_of(): Same as all_of(), except that no error is thrown for names that don’t
exist.
This helper selects variables with a function:

e where(): Applies a function to all variables and selects those for which the function
returns TRUE.

Usage

select(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

jtidy-select; One or more unquoted expressions separated by commas.
Variable names can be used as if they were positions in the data frame,
so expressions like x:y can be used to select a range of variables.
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Value
An object of the same type as .data. The output has the following properties:

e Rows are not affected.

e Output columns are a subset of input columns, potentially with a different order.
Columns will be renamed if new_name = old_name form is used.

e Data frame attributes are preserved.

e Groups are maintained; you can’t select off grouping variables.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

Here we show the usage for the basic selection operators. See the specific help pages to
learn about helpers like starts_with().

The selection language can be used in functions like dplyr: :select() or tidyr: :pivot_longer().
Let’s first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars %>% select(height)
#> # A tibble: 87 x 1

#>  height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # . with 83 more rows

iris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6

#>  Sepal.Width Petal.Length Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9
#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # . with 146 more rows

Select multiple variables by separating them with commas. Note how the order of columns
is determined by the order of inputs:
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starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#>  homeworld height mass

#>  <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # . with 83 more rows

Functions like tidyr: :pivot_longer() don’t take variables with dots. In this case use c()
to select multiple variables:

iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5

#>  Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # . with 296 more rows

Operators::
The : operator selects a range of consecutive variables:

starwars %>% select(name:mass)
#> # A tibble: 87 x 3

#>  name height mass
#>  <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # . with 83 more rows

The ! operator negates a selection:

starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species

#>  <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#># ... with 83 more rows, and 3 more variables: films <list>, vehicles <list>,
#> #  starships <list>

iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3

#>  Sepal.Width Petal.Width Species

#> <dbl> <dbl> <fct>

#> 1 3.5 0.2 setosa
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#>
#>
#>
#>

2
3
4

# ...

w w w

with 146 more rows
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0.2 setosa
.2 0.2 setosa
1 0.2 setosa

iris %>% select(!ends_with("Width"))

#>
#>
#>
#>
#>
#>
#>
#>

#

1
2
3
4
#

A tibble: 150 x 3

Sepal.Length Petal.Length
<dbl> <dbl>

5.1 1.4

4.9 1.4

4.7 1.3

4.6 1.5

. with 146 more rows

Species
<fct>
setosa
setosa
setosa
setosa

& and | take the intersection or the union of two selections:

iris %>% select(starts_with("Petal”) & ends_with("Width"))
#> # A tibble: 150 x 1

#>
#>
#>
#>
#>
#>
#>

1
2
3
4
#

Petal.Width
<dbl>
0.2
0.2
0.2
0.2
. with 146 more rows

iris %>% select(starts_with("Petal”) | ends_with("Width"))

#>
#>
#>
#>
#>
#>
#>
#>

#

1
2
3
4
#

A tibble: 150 x 3

Petal.Length Petal.Width Sepal.Width

<dbl> <dbl>
1.4 0.2
1.4 0.2
1.3 0.2
1.5 0.2

. with 146 more rows

<dbl>
3.5

3
3.2
3.1

To take the difference between two selections, combine the & and ! operators:

iris %>% select(starts_with("Petal”) & !ends_with("Width"))

#>
#>
#>
#>
#>
#>
#>
#>

#

See Also

A tibble: 150 x 1
Petal.Length
<db1l>
1.4
1.4
1.3
1.5
. with 146 more rows

Other single table verbs: arrange(), filter(), mutate(), rename(), slice(), summarise()
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setops Set operations

Description

These functions override the set functions provided in base to make them generic so that
efficient versions for data frames and other tables can be provided. The default methods call
the base versions. Beware that intersect(), union() and setdiff () remove duplicates.

Usage
union_all(x, y, ...)
Arguments
X, Y objects to perform set function on (ignoring order)
These dots are for future extensions and must be empty.
Examples

mtcars$model <- rownames(mtcars)
first <- mtcars[1:20, ]
second <- mtcars[10:32, ]

intersect(first, second)
union(first, second)
setdiff(first, second)
setdiff(second, first)

union_all(first, second)
setequal(mtcars, mtcars[32:1, 1)

# Handling of duplicates:
a <- data.frame(column = c(1:10, 10))
b <- data.frame(column = c(1:5, 5))

# intersection is 1 to 5, duplicates removed (5)
intersect(a, b)

# union is 1 to 10, duplicates removed (5 and 10)
union(a, b)

# set difference, duplicates removed (10)
setdiff(a, b)

# union all does not remove duplicates
union_all(a, b)
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slice Subset rows using their positions

Description

slice() lets you index rows by their (integer) locations. It allows you to select, remove,
and duplicate rows. It is accompanied by a number of helpers for common use cases:

e slice_head() and slice_tail() select the first or last rows.

e slice_sample() randomly selects rows.

e slicemin() and slice_max() select rows with highest or lowest values of a variable.

If .data is a grouped.df, the operation will be performed on each group, so that (e.g.)
slice_head(df,n = 5) will select the first five rows in each group.

Usage
slice(.data, ..., .preserve = FALSE)
slice_head(.data, ..., n, prop)
slice_tail(.data, ..., n, prop)
slice_min(.data, order_by, ..., n, prop, with_ties = TRUE)
slice_max(.data, order_by, ..., n, prop, with_ties = TRUE)
slice_sample(.data, ..., n, prop, weight_by = NULL, replace = FALSE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
For slice(): jdata-masking; Integer row values.
Provide either positive values to keep, or negative values to drop. The
values provided must be either all positive or all negative. Indices beyond
the number of rows in the input are silently ignored.
For slice_helpers(), these arguments are passed on to methods.
.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the
default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.
n, prop Provide either n, the number of rows, or prop, the proportion of rows to

select. If neither are supplied, n = 1 will be used.

If a negative value of n or prop is provided, the specified number or
proportion of rows will be removed.

If n is greater than the number of rows in the group (or prop > 1), the
result will be silently truncated to the group size. If the proportion of a
group size does not yield an integer number of rows, the absolute value
of propxnrow(.data) is rounded down.
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order_by Variable or function of variables to order by.

with_ties Should ties be kept together? The default, TRUE, may return more rows
than you request. Use FALSE to ignore ties, and return the first n rows.

weight_by Sampling weights. This must evaluate to a vector of non-negative numbers
the same length as the input. Weights are automatically standardised to
sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the default)
replacement.

Details

Slice does not work with relational databases because they have no intrinsic notion of row
order. If you want to perform the equivalent operation, use filter() and row_number().

Value

An object of the same type as .data. The output has the following properties:

Each row may appear 0, 1, or many times in the output.
Columns are not modified.
Groups are not modified.

Data frame attributes are preserved.

Methods

These function are generics, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

Methods available in currently loaded packages:

slice(): no methods found.
slice_head(): no methods found.
slice_tail(): no methods found.
slice_min(): no methods found.
slice_max(): no methods found.

slice_sample(): no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), rename(), select(), summarise()

Examples

mtcars %>% slice(1L)

# Similar to tail(mtcars, 1):

mtcars %>% slice(n())

mtcars %>% slice(5:n())

# Rows can be dropped with negative indices:
slice(mtcars, -(1:4))

# First and last rows based on existing order
mtcars %>% slice_head(n = 5)
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mtcars %>% slice_tail(n = 5)

# Rows with minimum and maximum values of a variable
mtcars %>% slice_min(mpg, n = 5)
mtcars %>% slice_max(mpg, n = 5)

# slice_min() and slice_max() may return more rows than requested
# in the presence of ties. Use with_ties = FALSE to suppress
mtcars %>% slice_min(cyl, n = 1)

mtcars %>% slice_min(cyl, n = 1, with_ties = FALSE)

# slice_sample() allows you to random select with or without replacement
mtcars %>% slice_sample(n = 5)
mtcars %>% slice_sample(n = 5, replace = TRUE)

# you can optionally weight by a variable - this code weights by the
# physical weight of the cars, so heavy cars are more likely to get
# selected

mtcars %>% slice_sample(weight_by = wt, n = 5)

# Group wise operation -------------------—---———--———- -
df <- tibble(

group = rep(c("a", "b", "c"), c(1, 2, 4)),

X = runif(7)
)

# All slice helpers operate per group, silently truncating to the group
# size, so the following code works without error
df %>% group_by(group) %>% slice_head(n = 2)

# When specifying the proportion of rows to include non-integer sizes
# are rounded down, so group a gets @ rows
df %>% group_by(group) %>% slice_head(prop = 0.5)

# Filter equivalents ------------"-""-——-

# slice() expressions can often be written to use ‘filter()"‘ and

# “row_number()‘, which can also be translated to SQL. For many databases,

# you'll need to supply an explicit variable to use to compute the row number.
filter(mtcars, row_number() == 1L)

filter(mtcars, row_number() == n())

filter(mtcars, between(row_number(), 5, n()))

sql SQL escaping.

Description

These functions are critical when writing functions that translate R functions to sql func-
tions. Typically a conversion function should escape all its inputs and return an sql object.

Usage

sql(...)
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Arguments
Character vectors that will be combined into a single SQL expression.
starwars Starwars characters
Description

The original data, from SWAPI, the Star Wars API, https://swapi.dev/, has been revised
to reflect additional research into gender and sex determinations of characters.

Usage

starwars

Format

A tibble with 87 rows and 14 variables:

name Name of the character

height Height (cm)

mass Weight (kg)

hair_color,skin_color,eye_color Hair, skin, and eye colors
birth_year Year born (BBY = Before Battle of Yavin)

sex The biological sex of the character, namely male, female, hermaphroditic, or none (as
in the case for Droids).

gender The gender role or gender identity of the character as determined by their person-
ality or the way they were programmed (as in the case for Droids).

homeworld Name of homeworld

species Name of species

films List of films the character appeared in
vehicles List of vehicles the character has piloted

starships List of starships the character has piloted

Examples

starwars


https://swapi.dev/
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storms Storm tracks data

Description

This data is a subset of the NOAA Atlantic hurricane database best track data, https://
www.nhc.noaa.gov/data/#hurdat. The data includes the positions and attributes of storms
from 1975-2020, measured every six hours during the lifetime of a storm.

Usage

storms

Format
A tibble with 11,859 observations and 13 variables:

name Storm Name

year,month,day Date of report

hour Hour of report (in UTC)

lat,long Location of storm center

status Storm classification (Tropical Depression, Tropical Storm, or Hurricane)

category Saffir-Simpson storm category (estimated from wind speed. -1 = Tropical De-
pression, 0 = Tropical Storm)

wind storm’s maximum sustained wind speed (in knots)
pressure Air pressure at the storm’s center (in millibars)

tropicalstorm _force_diameter Diameter (in nautical miles) of the area experiencing
tropical storm strength winds (34 knots or above)

hurricane_force_diameter Diameter (in nautical miles) of the area experiencing hurri-
cane strength winds (64 knots or above)

See Also

The script to create the storms data set: https://github.com/tidyverse/dplyr/blob/
main/data-raw/storms.R

Examples

# show a plot of the storm paths
if (requireNamespace("ggplot2"”, quietly = TRUE)) {
library(ggplot2)
ggplot(storms) +
aes(x=long, y=lat, color=paste(year, name)) +
geom_path() +
guides(color="none') +
facet_wrap(“year)

}

storms


https://www.nhc.noaa.gov/data/#hurdat
https://www.nhc.noaa.gov/data/#hurdat
https://github.com/tidyverse/dplyr/blob/main/data-raw/storms.R
https://github.com/tidyverse/dplyr/blob/main/data-raw/storms.R
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summarise Summarise each group to fewer rows

Description

summarise() creates a new data frame. It will have one (or more) rows for each combination
of grouping variables; if there are no grouping variables, the output will have a single row
summarising all observations in the input. It will contain one column for each grouping
variable and one column for each of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

Usage

summarise(.data, ..., .groups = NULL)

summarize(.data, ..., .groups = NULL)

Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
jdata-masking; Name-value pairs of summary functions. The name will
be the name of the variable in the result.
The value can be:
e A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
e A vector of length n, e.g. quantile().
e A data frame, to add multiple columns from a single expression.
.groups [Experimental] Grouping structure of the result.
e “drop_last”: dropping the last level of grouping. This was the only
supported option before version 1.0.0.
e "drop”: All levels of grouping are dropped.
e “keep”: Same grouping structure as .data.
e "rowwise”: Each row is its own group.
When . groups is not specified, it is chosen based on the number of rows
of the results:
e If all the results have 1 row, you get "drop_last”.
o If the number of rows varies, you get "keep”.
In addition, a message informs you of that choice, unless the result is

ungrouped, the option ”dplyr.summarise.inform” is set to FALSE, or when
summarise() is called from a function in a package.

Value

An object usually of the same type as .data.

e The rows come from the underlying group_keys().

e The columns are a combination of the grouping keys and the summary expressions
that you provide.
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e The grouping structure is controlled by the .groups= argument, the output may be
another grouped_df, a tibble or a rowwise data frame.

e Data frame attributes are not preserved, because summarise() fundamentally creates
a new data frame.

Useful functions

e Center: mean(), median()
Spread: sd(), IQR(), mad()
Range: min(), max(), quantile()
Position: first(), last(), nth(),
Count: n(), n_distinct()
Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This
means that previously created summary variables can be further transformed or combined
within the summary, as in mutate(). However, it also means that summary variables with
the same names as previous variables overwrite them, making those variables unavailable
to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results,
consider using new names for your summary variables, especially when creating multiple
summaries.

Methods

This function is a generic, which means that packages can provide implementations (meth-
ods) for other classes. See the documentation of individual methods for extra arguments
and differences in behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), rename(), select(), slice()

Examples

# A summary applied to ungrouped tbl returns a single row
mtcars %>%
summarise(mean = mean(disp), n = n())

# Usually, you'll want to group first
mtcars %>%

group_by(cyl) %>%

summarise(mean = mean(disp), n = n())

# dplyr 1.0.0 allows to summarise to more than one value:
mtcars %>%
group_by(cyl) %>%
summarise(qs = quantile(disp, c(@.25, 0.75)), prob = c(0.25, 0.75))

# You use a data frame to create multiple columns so you can wrap
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# this up into a function:
my_quantile <- function(x, probs) {
tibble(x = quantile(x, probs), probs = probs)
3
mtcars %>%
group_by(cyl) %>%
summarise(my_quantile(disp, c(0.25, 0.75)))

# Each summary call removes one grouping level (since that group
# is now just a single row)
mtcars %>%

group_by(cyl, vs) %>%

summarise(cyl_n = n()) %>%

group_vars()

# BEWARE: reusing variables may lead to unexpected results
mtcars %>%

group_by(cyl) %>%

summarise(disp = mean(disp), sd = sd(disp))

# Refer to column names stored as strings with the ‘.data‘ pronoun:
var <- "mass”

summarise(starwars, avg = mean(.datal[[var]], na.rm = TRUE))

# Learn more in ?dplyr_data_masking

tbl Create a table from a data source

Description

This is a generic method that dispatches based on the first argument.

Usage

tbl(src, ...)

is.tbl(x)

Arguments
src A data source
Other arguments passed on to the individual methods

X Any object
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vars Select variables

Description

vars() was only needed for the scoped verbs, which have been superseded by the use of
across() in an existing verb. See vignette(”colwise") for details.

This helper is intended to provide equivalent semantics to select(). It is used for instance
in scoped summarising and mutating verbs (mutate_at() and summarise_at()).

Note that verbs accepting a vars() specification also accept a numeric vector of positions
or a character vector of column names.

Usage
vars(...)
Arguments
itidy-select; Variables to include/exclude in mutate/summarise. You
can use same specifications as in select(). If missing, defaults to all
non-grouping variables.
See Also

all vars() and any_vars() for other quoting functions that you can use with scoped verbs.

with_groups Perform an operation with temporary groups

Description

[Experimental]

This is an experimental new function that allows you to modify the grouping variables for
a single operation.

Usage
with_groups(.data, .groups, .f, ...)
Arguments
.data A data frame
.groups jtidy-select; One or more variables to group by. Unlike group_by (), you
can only group by existing variables, and you can use tidy-select syntax
like c(x,y,z) to select multiple variables.
Use NULL to temporarily ungroup.
.f Function to apply to regrouped data. Supports purrr-style ~ syntax

Additional arguments passed on to . ...
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Examples

df <- tibble(g = c(1, 1, 2, 2, 3), x = runif(5))
df %>%

with_groups(g, mutate, x_mean = mean(x))
df %>%

with_groups(g, ~ mutate(.x, x1 = first(x)))

df %>%
group_by(g) %>%
with_groups(NULL, mutate, x_mean = mean(x))

# NB: grouping can't be restored if you remove the grouping variables
df %>%

group_by(g) %>%

with_groups(NULL, mutate, g = NULL)
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